Spatially regularized estimation for the analysis of dynamic contrast-enhanced magnetic resonance imaging data

被引:9
|
作者
Sommer, Julia C. [1 ]
Gertheiss, Jan [2 ]
Schmid, Volker J. [1 ]
机构
[1] Univ Munich, Dept Stat, D-80539 Munich, Germany
[2] Univ Gottingen, Dept Anim Sci, D-37073 Gottingen, Germany
关键词
DCE-MRI; elastic net; model selection; multi-compartment model; spatially penalized estimation; MODELS; MRI; REGRESSION; INFERENCE; SELECTION;
D O I
10.1002/sim.5997
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Competing compartment models of different complexities have been used for the quantitative analysis of dynamic contrast-enhanced magnetic resonance imaging data. We present a spatial elastic net approach that allows to estimate the number of compartments for each voxel such that the model complexity is not fixed apriori. A multi-compartment approach is considered, which is translated into a restricted least square model selection problem. This is done by using a set of basis functions for a given set of candidate rate constants. The form of the basis functions is derived from a kinetic model and thus describes the contribution of a specific compartment. Using a spatial elastic net estimator, we chose a sparse set of basis functions per voxel, and hence, rate constants of compartments. The spatial penalty takes into account the voxel structure of an image and performs better than a penalty treating voxels independently. The proposed estimation method is evaluated for simulated images and applied to an in vivo dataset. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:1029 / 1041
页数:13
相关论文
共 50 条
  • [1] IMPROVED PROSTATE CANCER LOCALIZATION WITH SPATIALLY REGULARIZED DYNAMIC CONTRAST-ENHANCED MAGNETIC RESONANCE IMAGING
    Lukai, Liu
    Haider, Masoom A.
    Langer, Deanna L.
    Yetik, Imam Samil
    2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 644 - 647
  • [2] Vascularity and Dynamic Contrast-Enhanced Breast Magnetic Resonance Imaging
    Frankhouser, David E.
    Dietze, Eric
    Mahabal, Ashish
    Seewaldt, Victoria L.
    FRONTIERS IN RADIOLOGY, 2021, 1
  • [3] Contrast agents in dynamic contrast-enhanced magnetic resonance imaging
    Yan, Yuling
    Sun, Xilin
    Shen, Baozhong
    ONCOTARGET, 2017, 8 (26) : 43491 - 43505
  • [4] Dynamic Contrast-enhanced Magnetic Resonance Imaging: Applications in Oncology
    Teo, Q. Q.
    Thng, C. H.
    Koh, T. S.
    Ng, Q. S. p
    CLINICAL ONCOLOGY, 2014, 26 (10) : E9 - E20
  • [5] Dynamic Contrast-Enhanced Magnetic Resonance Imaging of the Metastatic Potential of Melanoma Xenografts
    Ovrebo, Kirsti Marie
    Ellingsen, Christine
    Galappathi, Kanthi
    Rofstad, Einar K.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2012, 83 (01): : E121 - E127
  • [6] Dynamic contrast-enhanced magnetic resonance imaging: definitive imaging of placental function?
    Chalouhi, G. E.
    Deloison, B.
    Siauve, N.
    Aimot, S.
    Balvay, D.
    Cuenod, C. A.
    Ville, Y.
    Clement, O.
    Salomon, L. J.
    SEMINARS IN FETAL & NEONATAL MEDICINE, 2011, 16 (01) : 22 - 28
  • [7] Analysis of pharmacokinetics of Gd-DTPA for dynamic contrast-enhanced magnetic resonance imaging
    Taheri, Saeid
    Shah, N. Jon
    Rosenberg, Gary A.
    MAGNETIC RESONANCE IMAGING, 2016, 34 (07) : 1034 - 1040
  • [8] Quantitative Analysis of Dynamic Contrast-Enhanced and Diffusion-Weighted Magnetic Resonance Imaging for Oncology in R
    Whitcher, Brandon
    Schmid, Volker J.
    JOURNAL OF STATISTICAL SOFTWARE, 2011, 44 (05): : 1 - 29
  • [9] Maximum Entropy Approach in Dynamic Contrast-Enhanced Magnetic Resonance Imaging
    Farsani, Zahra Amini
    Schmid, Volker J.
    METHODS OF INFORMATION IN MEDICINE, 2017, 56 (06) : 461 - 468
  • [10] Dynamic contrast-enhanced magnetic resonance imaging for head and neck cancers
    Elhalawani, Hesham
    Ger, Rachel B.
    Mohamed, Abdallah S. R.
    Awan, Musaddiq J.
    Ding, Yao
    Li, Kimberly
    Fave, Xenia J.
    Beers, Andrew L.
    Driscoll, Brandon
    Hormuth, David A., II
    van Houdt, Petra J.
    He, Renjie
    Zhou, Shouhao
    Mathieu, Kelsey B.
    Li, Heng
    Coolens, Catherine
    Chung, Caroline
    Bankson, James A.
    Huang, Wei
    Wang, Jihong
    Sandulache, Vlad C.
    Lai, Stephen Y.
    Howell, Rebecca M.
    Stafford, R. Jason
    Yankeelov, Thomas E.
    van der Heide, Uulke A.
    Frank, Steven J.
    Barboriak, Daniel P.
    Hazle, John D.
    Court, Laurence E.
    Kalpathy-Cramer, Jayashree
    Fuller, Clifton D.
    SCIENTIFIC DATA, 2018, 5