Inverse Q-filter for seismic resolution enhancement

被引:305
作者
Wang, Yanghua [1 ]
机构
[1] Univ London Imperial Coll Sci & Technol, Ctr Reservoir Geophys, Dept Earth Sci & Engn, London SW7 2BP, England
关键词
D O I
10.1190/1.2192912
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A principal limitation on seismic resolution is the earth attenuation, or Q-effect, including the energy dissipation of highfrequency wave components and the velocity dispersion that distorts seisimic wavelets. An inverse Q-filtering procedure attempts to remove the Q-effect to produce high-resolution seismic data. but some existing methods either reduce the S/N ratio. which limits spatial resolution, or generate an illusory high-resolution wavelet that contains no more subsurface information than the original low-resolution data. In this paper, seismic inverse Q-filtering is implemented in a stabilized manner to produce high-quality data in terms of resolution and S/N ratio. Stabilization is applied to only the amplitude compensation operator of a full inverse Q-filter because its phase operator is unconditionally stable, but the scheme neither amplifies nor suppresses high frequencies at late times where the data contain mostly ambient noise. The latter property makes the process in vertible, differentiating from some conventional stabilized inverse schemes that tend to suppress high frequencies at late times. The stabilized inverse Q-filter works for a general earth Q-model, variable with depth or traveltime, and is more accurate than a layered approach, which involves an approximation to the amplitude operator. Because the earth Q-model can now be defined accurately, instead of a constant-Q layered structure, the accuracy of the inverse Q-filter is much higher than for a layered approach, even when implemented in the Gabor transform domain. For the stabilization factor, an empirical relation is proposed to link it to a user-specified gain limit, as in an explicit gain-controlling scheme. Synthetic and real data examples demonstrate that the stabilized inverse Q-filter corrects the wavelet distortion in terms of shape and timing, compensates for energy loss without boosting ambient noise, and produces desirable seismic images with high resolution and high S/N ratio.
引用
收藏
页码:V51 / V60
页数:10
相关论文
共 50 条
[21]   A Disturbance Observer Approach with Online Q-Filter Tuning for Position Control of Quadcopters [J].
Mishra, Shatadal ;
Zhang, Wenlong .
2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, :3593-3598
[22]   Enhancing time resolution by stabilized inverse filter and Q estimated on instantaneous spectra [J].
Corrales, Alvaro ;
Cabrera, Francisco ;
Montes, Luis .
EARTH SCIENCES RESEARCH JOURNAL, 2014, 18 (01) :63-67
[23]   Resolution enhancement of pump-probe microscope with an inverse-annular filter [J].
Kobayashi, Takayoshi ;
Kawasumi, Koshi ;
Miyazaki, Jun ;
Nakata, Kazuaki .
OPTICAL REVIEW, 2018, 25 (02) :271-294
[24]   Improved disturbance rejection control for piezoelectric actuators based on combination of ESO and Q-filter [J].
Nie Zhuoyun ;
Ma Yijing ;
Liu Ruijuan ;
Guo Dongsheng .
ELECTRONICS LETTERS, 2018, 54 (14) :872-873
[25]   Oriented pre-stack inverse Q filtering for resolution enhancements of seismic data [J].
Liu, Guochang ;
Li, Chao ;
Rao, Ying ;
Chen, Xiaohong .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 223 (01) :488-501
[26]   Improve the Resolution of Vertical Seismic Profile with a Traveltime-varying Inverse Q Filtering [J].
Wang Jun .
ICSP: 2008 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-5, PROCEEDINGS, 2008, :2910-2913
[27]   Resolution enhancement of pump-probe microscopy with an inverse-annular spatial filter [J].
Kobayashi, T. ;
Kawasumi, K. ;
Miyazaki, J. ;
Nakata, K. .
AIP ADVANCES, 2016, 6 (12)
[28]   Reduced Order Type-k Disturbance Observer based on a Generalized Q-filter Design Scheme [J].
Joo, Youngjun ;
Park, Gyunghoon .
2014 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2014), 2014, :1211-1216
[29]   A VARIABLE GAIN-LIMITED INVERSE Q FILTERING METHOD TO ENHANCE THE RESOLUTION OF SEISMIC DATA [J].
Shi, Yu ;
Zhou, Huai-Lai ;
Niu, Cong ;
Liu, Chun-Cheng ;
Meng, Ling-Jun .
JOURNAL OF SEISMIC EXPLORATION, 2019, 28 (03) :257-276
[30]   Lemmas on Determination of Minimum Bandwidth of Q-filter for Robust Stability of Feedback Loop with Disturbance Observers [J].
Chang, Hamin ;
Kim, Hyuntae ;
Shim, Hyungbo .
2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, :893-898