Enhanced heat dissipation performance of chemical-doped graphene for flexible devices

被引:3
作者
Chung, Yung-Bin [1 ,2 ]
Kireev, Dmitry [2 ]
Kim, Myungsoo [2 ]
Akinwande, Deji [2 ]
Kwon, Sung-Joo [1 ]
机构
[1] Samsung Display Co, Yongin 17113, Gyeonggi Do, South Korea
[2] Univ Texas Austin, Microelect Res Ctr, Austin, TX 78712 USA
关键词
Graphene; Heat dissipation; Chemical doping; Bending; Resistivity; Raman spectroscopy; FEW-LAYER GRAPHENE; WORK-FUNCTION; SPREADER; COPPER; FILMS;
D O I
10.1007/s40042-020-00014-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
As the rapid development of electronic technology, the amount of unavoidable heat from electronic components is also increasing. Therefore, the demand for efficient heat dissipation materials with high performance is continuously increasing. Graphene is one of the best candidates in terms of heat dissipation property and intrinsic flexibility. In this work, we show that chemical doping is an effective way to additionally improve the heat dissipation property of large-scale CVD grown monolayer graphene. We found that heat dissipation property of monolayer graphene, chemically doped with HNO3 and PFSA improves by the 9.94% and 4.12% compared with pristine graphene, respectively. Moreover, it shows the stable heat dissipation property after bending test.
引用
收藏
页码:45 / 50
页数:6
相关论文
共 27 条
[1]   Graphene-Based Heat Spreader for Flexible Electronic Devices [J].
Bae, Sang-Hoon ;
Shabani, Roxana ;
Lee, Jae-Bok ;
Baeck, Seung-Jae ;
Cho, Hyoung Jin ;
Ahn, Jong-Hyun .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (12) :4171-4175
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[3]   Highly flexible biodegradable cellulose nanofiber/graphene heat-spreader films with improved mechanical properties and enhanced thermal conductivity [J].
Chen, Yapeng ;
Hou, Xiao ;
Kang, Ruiyang ;
Liang, Yun ;
Guo, Liangchao ;
Dai, Wen ;
Nishimura, Kazuhito ;
Lin, Cheng-Te ;
Jiang, Nan ;
Yu, Jinhong .
JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (46) :12739-12745
[4]   Stable, efficient p-type doping of graphene by nitric acid [J].
D'Arsie, Lorenzo ;
Esconjauregui, Santiago ;
Weatherup, Robert S. ;
Wu, Xingyi ;
Arter, William E. ;
Sugime, Hisashi ;
Cepek, Cinzia ;
Robertson, John .
RSC ADVANCES, 2016, 6 (114) :113185-113192
[5]   Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots [J].
Gao, Zhaoli ;
Zhang, Yong ;
Fu, Yifeng ;
Yuen, Matthew M. F. ;
Liu, Johan .
CARBON, 2013, 61 :342-348
[6]   Versatile p-Type Chemical Doping to Achieve Ideal Flexible Graphene Electrodes [J].
Han, Tae-Hee ;
Kwon, Sung-Joo ;
Li, Nannan ;
Seo, Hong-Kyu ;
Xu, Wentao ;
Kim, Kwang S. ;
Lee, Tae-Woo .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (21) :6197-6201
[7]   Heat transport enhancement of heat sinks using Cu-coated graphene composites [J].
Hsieh, Chien-Te ;
Chen, Yu-Fu ;
Lee, Cheng-En ;
Chiang, Yu-Ming ;
Hsieh, Keng-Yen ;
Wu, Ho-Sheng .
MATERIALS CHEMISTRY AND PHYSICS, 2017, 197 :105-112
[8]   High-Performance Graphene-Based Transparent Flexible Heaters [J].
Kang, Junmo ;
Kim, Hyeongkeun ;
Kim, Keun Soo ;
Lee, Seoung-Ki ;
Bae, Sukang ;
Ahn, Jong-Hyun ;
Kim, Young-Jin ;
Choi, Jae-Boong ;
Hong, Byung Hee .
NANO LETTERS, 2011, 11 (12) :5154-5158
[9]   Chemical Doping of Large-Area Stacked Graphene Films for Use as Transparent, Conducting Electrodes [J].
Kasry, Amal ;
Kuroda, Marcelo A. ;
Martyna, Glenn J. ;
Tulevski, George S. ;
Bol, Ageeth A. .
ACS NANO, 2010, 4 (07) :3839-3844
[10]   Comparison of simulated platform dynamics in steady/dynamic winds and irregular waves for OC4 semi-submersible 5MW wind-turbine against DeepCwind model-test results [J].
Kim, H. C. ;
Kim, M. H. .
OCEAN SYSTEMS ENGINEERING-AN INTERNATIONAL JOURNAL, 2016, 6 (01) :1-21