Properties of Chebyshev Generalized Rational Fractions in L1

被引:0
作者
Tsar'kov, I. G. [1 ,2 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow 119991, Russia
[2] Moscow Ctr Fundamental & Appl Math, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
EXISTENCE; SPACES; SETS;
D O I
10.1134/S1061920822040161
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that, under a natural constraint, a set of generalized rational fractions in an atomless L-1-space is a Chebyshev set with continuous metric projection only if this set is convex. Hence this set is not a uniqueness set in L-1, and therefore, some x is an element of L(1 )has at least two nearest points in this set. As a result, it is shown that the set of classical algebraic fractions R-n,R-m (consisting of ratios of algebraic polynomials of degree <= n, <= m, respectively) is not a Chebyshev set in L-1[a, b], and therefore, there exists a function x is an element of L-1[a, b] with at least two nearest points in R-n,R-m. This result solves one long-standing problem in rational approximation.
引用
收藏
页码:583 / 587
页数:5
相关论文
共 20 条
[1]   Solarity of Chebyshev Sets in Dual Spaces and Uniquely Remotal Sets [J].
Alimov, A. R. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (04) :785-790
[2]   Smoothness of subspace sections of the unit balls of C(Q) and L1 [J].
Alimov, A. R. ;
Tsar'kov, I. G. .
JOURNAL OF APPROXIMATION THEORY, 2021, 265
[3]   Connectedness and solarity in problems of best and near-best approximation [J].
Alimov, A. R. ;
Tsar'kov, I. G. .
RUSSIAN MATHEMATICAL SURVEYS, 2016, 71 (01) :1-77
[4]  
Alimov A. R., DOKL AKAD NAUK+
[5]  
Alimov AR., 2021, Geometric Approximation Theory, DOI [10.1007/978-3-030-90951-2, DOI 10.1007/978-3-030-90951-2]
[6]   The problem of convexity of Chebyshev sets [J].
Balaganskii, VS ;
Vlasov, LP .
RUSSIAN MATHEMATICAL SURVEYS, 1996, 51 (06) :1127-1190
[7]  
Berens H, 1977, VORLESUNG NICHTLINEA
[8]   EXISTENCE OF BEST RATIONAL TCHEBYCHEFF APPROXIMATIONS [J].
BOEHM, B .
PACIFIC JOURNAL OF MATHEMATICS, 1965, 15 (01) :19-&
[9]   EXISTENCE OF BEST APPROXIMATIONS [J].
DEUTSCH, F .
JOURNAL OF APPROXIMATION THEORY, 1980, 28 (02) :132-154
[10]  
Kothe G., 1979, TOPOLOGICAL VECTOR S