Value at risk estimation using independent component analysis-generalized autoregressive conditional heteroscedasticity (ICA-GARCH) models

被引:11
|
作者
Wu, Edmond H. C. [1 ]
Yu, Philip L. H. [1 ]
Li, W. K. [1 ]
机构
[1] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
10.1142/S0129065706000779
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We suggest using independent component analysis (ICA) to decompose multivariate time series into statistically independent time series. Then, we propose to use ICA-GARCH models which are computationally efficient to estimate the multivariate volatilities. The experimental results show that the ICA-GARCH models are more effective than existing methods, including DCC, PCA-CARCH, and EWMA. We also apply the proposed models to compute value at risk (VaR) for risk management applications. The backtesting and the out-of-sample tests validate the performance of ICA-GARCH models for value at risk estimation.
引用
收藏
页码:371 / 382
页数:12
相关论文
共 16 条
  • [1] Conditional Quantile Estimation for Generalized Autoregressive Conditional Heteroscedasticity Models
    Xiao, Zhijie
    Koenker, Roger
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (488) : 1696 - 1712
  • [2] Strict Stationarity Testing and Estimation of Explosive and Stationary Generalized Autoregressive Conditional Heteroscedasticity Models
    Francq, Christian
    Zakoian, Jean-Michel
    ECONOMETRICA, 2012, 80 (02) : 821 - 861
  • [3] On conditional moments of garch models, with applications to multiple period value at risk estimation
    Wong, CM
    So, MKP
    STATISTICA SINICA, 2003, 13 (04) : 1015 - 1044
  • [4] Value-at-Risk-Estimation in the Mexican Stock Exchange Using Conditional Heteroscedasticity Models and Theory of Extreme Values
    Aguirre Salado, Alejandro Ivan
    Vaquera Huerta, Humberto
    Ramirez Guzman, Martha Elva
    Valdez Lazalde, Jose Rene
    Aguirre Salado, Carlos Arturo
    ECONOMIA MEXICANA-NUEVA EPOCA, 2013, 22 (01): : 177 - 205
  • [5] Monitoring multivariate process using improved Independent component analysis-generalized likelihood ratio strategy
    Kini, K. Ramakrishna
    Madakyaru, Muddu
    IFAC PAPERSONLINE, 2020, 53 (01): : 392 - 397
  • [6] VALUE AT RISK ESTIMATION USING GARCH-TYPE MODELS
    Predescu, Oana Madalina
    Stancu, Stelian
    ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, 2011, 45 (02): : 105 - 123
  • [7] Estimation for conditional higher moments risk based on independent component analysis
    Xu, Qi-Fa
    Jiang, Cui-Xia
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 2358 - +
  • [8] Value-at-risk bounds for multivariate heavy tailed distribution: an application to the Glosten-Jagannathan-Runkle generalized autoregressive conditional heteroscedasticity model
    Gammoudi, Imed
    El Ghourabi, Mohamed
    BelKacem, Lotfi
    JOURNAL OF RISK MODEL VALIDATION, 2016, 10 (03): : 49 - 68
  • [9] Estimating Conditional Value at Risk in the Tehran Stock Exchange Based on the Extreme Value Theory Using GARCH Models
    Tabasi, Hamed
    Yousefi, Vahidreza
    Tamosaitiene, Jolanta
    Ghasemi, Foroogh
    ADMINISTRATIVE SCIENCES, 2019, 9 (02)
  • [10] Assessing the performance of generalized autoregressive conditional heteroskedasticity-based value-at-risk models: a case of frontier markets
    Vee, Dany Ng Cheong
    Gonpot, Preethee Nunkoo
    Sookia, Noor
    JOURNAL OF RISK MODEL VALIDATION, 2012, 6 (04): : 95 - 111