On almost regular tournament matrices

被引:8
作者
Eschenbach, C
Hall, F
Hemasinha, R
Kirkland, SJ
Li, ZS
Shader, BL
Stuart, JL
Weaver, JR [1 ]
机构
[1] Univ W Florida, Dept Math & Stat, Pensacola, FL 32514 USA
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
[3] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[4] Univ Wyoming, Dept Math, Laramie, WY 82071 USA
[5] Univ So Mississippi, Dept Math, Hattiesburg, MS 39406 USA
关键词
almost regular tournament; Brualdi-Li conjecture; determinant; eigenvalues; spectral radius; tournament;
D O I
10.1016/S0024-3795(99)00249-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Spectral and determinantal properties of a special dass M-n of 2n x 2n almost regular tournament matrices are studied. In particular, the maximum Perron value of the matrices in this class is determined and shown to be achieved by the Brualdi-Li matrix, which has been conjectured to have the largest Perron value among all tournament matrices of even order. We also establish some determinantal inequalities for matrices in M-n and describe the structure of their associated walk spaces. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:103 / 121
页数:19
相关论文
共 19 条
[1]  
Algorithms E., 1992, ANN DISCRETE MATH, V53, P221, DOI DOI 10.1016/S0167-5060(08)70325-X
[2]  
BRAUER A, 1968, B AM MATH SOC, V74, P1133, DOI 10.1090/S0002-9904-1968-12079-8
[3]  
BRAUER A, 1972, LINEAR ALGEBRA APPL, V5, P311
[4]  
Brualdi R. A., 1983, DISCRETE MATH, V43, P1133
[5]  
Brualdi R. A., 1991, COMBINATORIAL MATRIX, V39
[6]   ALGEBRAIC MULTIPLICITY OF THE EIGENVALUES OF A TOURNAMENT MATRIX [J].
DECAEN, D ;
GREGORY, DA ;
KIRKLAND, SJ ;
PULLMAN, NJ ;
MAYBEE, JS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 169 :179-193
[7]  
FRIEDLAND S, 1993, IMA VOL MATH APPL, V50, P189
[8]  
Horn R. A., 1986, Matrix analysis
[9]  
Kirkland S, 1997, LINEAR ALGEBRA APPL, V262, P209
[10]   A note on Perron vectors for almost regular tournament matrices [J].
Kirkland, S .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 266 :43-47