Effect of nanostructures on anchoring stem cell-derived neural tissue to artificial surfaces

被引:10
作者
Berces, Z. [1 ,2 ]
Pomothy, J. [3 ]
Horvath, A. Cs [1 ,2 ,4 ]
Kohidi, T. [3 ]
Benyei, E. [3 ]
Fekete, Z. [1 ,2 ]
Madarasz, E. [3 ]
Pongracz, A. [1 ,2 ]
机构
[1] Pazmany Peter Catholic Univ, Fac Informat Technol & Bion, Res Grp Implantable Microsyst, 50-A Prater St, H-1083 Budapest, Hungary
[2] Hungarian Acad Sci, Inst Tech Phys & Mateial Sci, Res Ctr Nat Sci, 29-33 Konkoly Thege St, H-1121 Budapest, Hungary
[3] HAS, Lab Cellular & Dev Neurobiol, Inst Expt Med, 43 Szigony Str, H-1083 Budapest, Hungary
[4] Obuda Univ, Doctoral Sch Mat Sci & Technol, 96-B Becsi Str, H-1034 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
black poly-silicon; nanostructuring; cell adhesion; PROGENITOR CELLS; DIFFERENTIATION; GROWTH; BRAIN; NANOTOPOGRAPHY; NANOMATERIALS; ATTACHMENT; MICROELECTRODES; PROLIFERATION; HIPPOCAMPUS;
D O I
10.1088/1741-2552/aad972
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Chronic application of brain implants monitoring or modulating neuronal activity are hindered by the foreign body response of the tissue. Topographical modification of implant surfaces may reduce negative tissue response by imitating the structure of the extracellular matrix and therefore affecting the attachment and behavior of neural cells. Approach. In our in vitro study, the effect of nanostructuring was investigated on two commercially used neural implant materials: silicon and platinum. The adhesion, survival and arrangement of neural stern cells (NE4C) and microglial cells (BV2) were investigated and compared to nanostructured and flat Si and Pt surfaces using cell viability studies and fluorescent microscopy image analysis. Main results. Our data indicated that neural cells established strong adhesive couplings with each other, instead of binding to the artificial surfaces. Significance. The phenomena resemble some features of in vivo separation of living tissue from the implanted artificial material, providing an in vitro model for studying immune response.
引用
收藏
页数:10
相关论文
共 48 条
[1]   Neuronal replacement from endogenous precursors in the adult brain after stroke [J].
Arvidsson, A ;
Collin, T ;
Kirik, D ;
Kokaia, Z ;
Lindvall, O .
NATURE MEDICINE, 2002, 8 (09) :963-970
[2]   Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates [J].
Barrese, James C. ;
Rao, Naveen ;
Paroo, Kaivon ;
Triebwasser, Corey ;
Vargas-Irwin, Carlos ;
Franquemont, Lachlan ;
Donoghue, John P. .
JOURNAL OF NEURAL ENGINEERING, 2013, 10 (06)
[3]   Engineering Substrate Topography at the Micro- and Nanoscale to Control Cell Function [J].
Bettinger, Christopher J. ;
Langer, Robert ;
Borenstein, Jeffrey T. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (30) :5406-5415
[4]   Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays [J].
Biran, R ;
Martin, DC ;
Tresco, PA .
EXPERIMENTAL NEUROLOGY, 2005, 195 (01) :115-126
[5]   Nanostructured Surfaces of Dental Implants [J].
Bressan, Eriberto ;
Sbricoli, Luca ;
Guazzo, Riccardo ;
Tocco, Ilaria ;
Roman, Marco ;
Vindigni, Vincenzo ;
Stellini, Edoardo ;
Gardin, Chiara ;
Ferroni, Letizia ;
Sivolella, Stefano ;
Zavan, Barbara .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2013, 14 (01) :1918-1931
[6]   Nanomaterials and nanoparticles: Sources and toxicity [J].
Buzea, Cristina ;
Pacheco, Ivan I. ;
Robbie, Kevin .
BIOINTERPHASES, 2007, 2 (04) :MR17-MR71
[7]   Tools for Probing Local Circuits: High-Density Silicon Probes Combined with Optogenetics [J].
Buzsaki, Gyoergy ;
Stark, Eran ;
Berenyi, Antal ;
Khodagholy, Dion ;
Kipke, Daryl R. ;
Yoon, Euisik ;
Wise, Kensall D. .
NEURON, 2015, 86 (01) :92-105
[8]   Neural stimulation and recording electrodes [J].
Cogan, Stuart F. .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2008, 10 :275-309
[9]  
Dalby M J, 2004, IEE Proc Nanobiotechnol, V151, P53, DOI 10.1049/ip-nbt:20040534
[10]  
Dash PK, 2001, J NEUROSCI RES, V63, P313, DOI 10.1002/1097-4547(20010215)63:4<313::AID-JNR1025>3.0.CO