An efficient approach for short term load forecasting using artificial neural networks

被引:119
|
作者
Kandil, Nahi
Wamkeue, Rene
Saad, Maarouf
Georges, Semaan
机构
[1] Univ Quebec Abitibi Temiscaming, Rouyn Noranda, PQ J8X 5E4, Canada
[2] Ecole Technol Super, Montreal, PQ H3C 1K3, Canada
[3] Univ Notre Dame, Zouk Mosbeh, Lebanon
关键词
power systems; load forecasting; artificial neural networks;
D O I
10.1016/j.ijepes.2006.02.014
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In previous work, we applied artificial neural networks (ANN) for short term load forecasting using real load and weather data from the Hydro-Quebec databases where three types of variables were used as inputs to the neural network: (a) hour and day indicators, (b) weather related inputs and (c) historical loads. In general, for forecasting with a lead time of up to a few days ahead, load history (for the last few days) is not available, and therefore, estimated values of this load are used instead. However, a small error in these estimated values may grow up dramatically and lead to a serious problem in load forecasting since this error is fed back as an input to the forecasting procedure. In this paper, we demonstrate ANN capabilities in load forecasting without the use of load history as an input. In addition, only temperature (from weather variables) is used, in this application, where results show that other variables like sky condition (cloud cover) and wind velocity have no serious effect and may not be considered in the load forecasting procedure. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:525 / 530
页数:6
相关论文
共 50 条
  • [21] NEURAL NETWORKS APPLICATION IN SHORT-TERM LOAD FORECASTING
    Tudose, Andrei
    Picioroaga, Irina
    Sidea, Dorian
    Bulac, Constantin
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2021, 83 (02): : 231 - 240
  • [22] Artificial Neural Network Approach for Short Term Load Forecasting for Illam Region
    Hayati, Mohsen
    Shirvany, Yazdan
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 22, 2007, 22 : 280 - 284
  • [23] Short-term electric load forecasting using neural networks
    Ramezani, M
    Falaghi, H
    Haghifam, MR
    Shahryari, GA
    Eurocon 2005: The International Conference on Computer as a Tool, Vol 1 and 2 , Proceedings, 2005, : 1525 - 1528
  • [24] Artificial neural network based short-term load forecasting
    Munkhjargal, S
    Manusov, VZ
    KORUS 2004, VOL 1, PROCEEDINGS, 2004, : 262 - 264
  • [25] SHORT-TERM LOAD FORECASTING USING FUZZY NEURAL NETWORKS
    BAKIRTZIS, AG
    THEOCHARIS, JB
    KIARTZIS, SJ
    SATSIOS, KJ
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1995, 10 (03) : 1518 - 1524
  • [26] SHORT TERM TRAFFIC FLOW FORECASTING USING ARTIFICIAL NEURAL NETWORKS
    Cicek, Zeynep Idil Erzurum
    Ozturk, Zehra Kamisli
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2018, 9 (04): : 405 - 414
  • [27] Electric Short-Term Load Forecasting Using Artificial Neural Networks and Fuzzy Expert System
    Sun HeRu
    Wang Wei
    PROCEEDINGS OF THE 2011 INTERNATIONAL CONFERENCE ON INFORMATICS, CYBERNETICS, AND COMPUTER ENGINEERING (ICCE2011), VOL 3: COMPUTER NETWORKS AND ELECTRONIC ENGINEERING, 2011, 112 : 699 - +
  • [28] Bayesian Neural Networks for Short Term Load Forecasting
    Shi, Hui-Feng
    Lu, Yan-Xia
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, 2009, : 160 - 165
  • [29] Grouping Model Application on Artificial Neural Networks for Short-term Load Forecasting
    Zhang, Shunhua
    Lian, Jingjing
    Zhao, Zhiying
    Xu, Huijun
    Liu, Jing
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 6203 - 6206
  • [30] A new approach using artificial neural network and time series models for short term load forecasting
    Abu-El-Magd, MA
    Findlay, RD
    CCECE 2003: CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-3, PROCEEDINGS: TOWARD A CARING AND HUMANE TECHNOLOGY, 2003, : 1723 - 1726