Full-dispersion Monte Carlo simulation of phonon transport in micron-sized graphene nanoribbons

被引:57
作者
Mei, S. [1 ]
Maurer, L. N. [2 ]
Aksamija, Z. [3 ]
Knezevic, I. [1 ]
机构
[1] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[3] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
THERMAL-CONDUCTIVITY; HEAT-CONDUCTION; PERFORMANCE; STRENGTH; EDGES; FILMS;
D O I
10.1063/1.4899235
中图分类号
O59 [应用物理学];
学科分类号
摘要
We simulate phonon transport in suspended graphene nanoribbons (GNRs) with real-space edges and experimentally relevant widths and lengths (from submicron to hundreds of microns). The full-dispersion phonon Monte Carlo simulation technique, which we describe in detail, involves a stochastic solution to the phonon Boltzmann transport equation with the relevant scattering mechanisms (edge, three-phonon, isotope, and grain boundary scattering) while accounting for the dispersion of all three acoustic phonon branches, calculated from the fourth-nearest-neighbor dynamical matrix. We accurately reproduce the results of several experimental measurements on pure and isotopically modified samples [S. Chen et al., ACS Nano 5, 321 (2011); S. Chen et al., Nature Mater. 11, 203 (2012); X. Xu et al., Nat. Commun. 5, 3689 (2014)]. We capture the ballistic-to-diffusive crossover in wide GNRs: room-temperature thermal conductivity increases with increasing length up to roughly 100 mu m, where it saturates at a value of 5800 W/m K. This finding indicates that most experiments are carried out in the quasiballistic rather than the diffusive regime, and we calculate the diffusive upper-limit thermal conductivities up to 600 K. Furthermore, we demonstrate that calculations with isotropic dispersions overestimate the GNR thermal conductivity. Zigzag GNRs have higher thermal conductivity than same-size armchair GNRs, in agreement with atomistic calculations. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:17
相关论文
共 121 条
  • [11] Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
  • [12] Intrinsic lattice thermal conductivity of semiconductors from first principles
    Broido, D. A.
    Malorny, M.
    Birner, G.
    Mingo, Natalio
    Stewart, D. A.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (23)
  • [13] Nanoscale thermal transport
    Cahill, DG
    Ford, WK
    Goodson, KE
    Mahan, GD
    Majumdar, A
    Maris, HJ
    Merlin, R
    Phillpot, SR
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) : 793 - 818
  • [14] Atomically precise bottom-up fabrication of graphene nanoribbons
    Cai, Jinming
    Ruffieux, Pascal
    Jaafar, Rached
    Bieri, Marco
    Braun, Thomas
    Blankenburg, Stephan
    Muoth, Matthias
    Seitsonen, Ari P.
    Saleh, Moussa
    Feng, Xinliang
    Muellen, Klaus
    Fasel, Roman
    [J]. NATURE, 2010, 466 (7305) : 470 - 473
  • [15] Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition
    Cai, Weiwei
    Moore, Arden L.
    Zhu, Yanwu
    Li, Xuesong
    Chen, Shanshan
    Shi, Li
    Ruoff, Rodney S.
    [J]. NANO LETTERS, 2010, 10 (05) : 1645 - 1651
  • [16] Molecular dynamics simulation study on heat transport in monolayer graphene sheet with various geometries
    Cao, Ajing
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 111 (08)
  • [17] Particularities of heat conduction in nanostructures
    Chen, Gang
    [J]. JOURNAL OF NANOPARTICLE RESEARCH, 2000, 2 (02) : 199 - 204
  • [18] Chen SS, 2012, NAT MATER, V11, P203, DOI [10.1038/NMAT3207, 10.1038/nmat3207]
  • [19] Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments
    Chen, Shanshan
    Moore, Arden L.
    Cai, Weiwei
    Suk, Ji Won
    An, Jinho
    Mishra, Columbia
    Amos, Charles
    Magnuson, Carl W.
    Kang, Junyong
    Shi, Li
    Ruoff, Rodney S.
    [J]. ACS NANO, 2011, 5 (01) : 321 - 328
  • [20] Monte Carlo simulation of silicon nanowire thermal conductivity
    Chen, YF
    Li, DY
    Lukes, JR
    Majumdar, A
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2005, 127 (10): : 1129 - 1137