Full-dispersion Monte Carlo simulation of phonon transport in micron-sized graphene nanoribbons

被引:57
作者
Mei, S. [1 ]
Maurer, L. N. [2 ]
Aksamija, Z. [3 ]
Knezevic, I. [1 ]
机构
[1] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[3] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
THERMAL-CONDUCTIVITY; HEAT-CONDUCTION; PERFORMANCE; STRENGTH; EDGES; FILMS;
D O I
10.1063/1.4899235
中图分类号
O59 [应用物理学];
学科分类号
摘要
We simulate phonon transport in suspended graphene nanoribbons (GNRs) with real-space edges and experimentally relevant widths and lengths (from submicron to hundreds of microns). The full-dispersion phonon Monte Carlo simulation technique, which we describe in detail, involves a stochastic solution to the phonon Boltzmann transport equation with the relevant scattering mechanisms (edge, three-phonon, isotope, and grain boundary scattering) while accounting for the dispersion of all three acoustic phonon branches, calculated from the fourth-nearest-neighbor dynamical matrix. We accurately reproduce the results of several experimental measurements on pure and isotopically modified samples [S. Chen et al., ACS Nano 5, 321 (2011); S. Chen et al., Nature Mater. 11, 203 (2012); X. Xu et al., Nat. Commun. 5, 3689 (2014)]. We capture the ballistic-to-diffusive crossover in wide GNRs: room-temperature thermal conductivity increases with increasing length up to roughly 100 mu m, where it saturates at a value of 5800 W/m K. This finding indicates that most experiments are carried out in the quasiballistic rather than the diffusive regime, and we calculate the diffusive upper-limit thermal conductivities up to 600 K. Furthermore, we demonstrate that calculations with isotropic dispersions overestimate the GNR thermal conductivity. Zigzag GNRs have higher thermal conductivity than same-size armchair GNRs, in agreement with atomistic calculations. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:17
相关论文
共 121 条
  • [1] Patterning, Characterization, and Chemical Sensing Applications of Graphene Nanoribbon Arrays Down to 5 nm Using Helium Ion Beam Lithography
    Abbas, Ahmad N.
    Liu, Gang
    Liu, Bilu
    Zhang, Luyao
    Liu, He
    Ohlberg, Douglas
    Wu, Wei
    Zhou, Chongwu
    [J]. ACS NANO, 2014, 8 (02) : 1538 - 1546
  • [2] Lattice thermal transport in large-area polycrystalline graphene
    Aksamija, Z.
    Knezevic, I.
    [J]. PHYSICAL REVIEW B, 2014, 90 (03):
  • [3] Thermal transport in graphene nanoribbons supported on SiO2
    Aksamija, Z.
    Knezevic, I.
    [J]. PHYSICAL REVIEW B, 2012, 86 (16):
  • [4] Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering
    Aksamija, Z.
    Knezevic, I.
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (14)
  • [5] [Anonymous], FRONT PHYS
  • [6] Ashcroft N., 2011, Solid State Physics
  • [7] Ballistic to diffusive crossover of heat flow in graphene ribbons
    Bae, Myung-Ho
    Li, Zuanyi
    Aksamija, Zlatan
    Martin, Pierre N.
    Xiong, Feng
    Ong, Zhun-Yong
    Knezevic, Irena
    Pop, Eric
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [8] Prediction of thermal conductivity of nanostructures: Influence of phonon dispersion approximation
    Baillis, D.
    Randrianalisoa, J.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (11-12) : 2516 - 2527
  • [9] Superior thermal conductivity of single-layer graphene
    Balandin, Alexander A.
    Ghosh, Suchismita
    Bao, Wenzhong
    Calizo, Irene
    Teweldebrhan, Desalegne
    Miao, Feng
    Lau, Chun Ning
    [J]. NANO LETTERS, 2008, 8 (03) : 902 - 907
  • [10] Phononics in low-dimensional materials
    Balandin, Alexander A.
    Nika, Denis L.
    [J]. MATERIALS TODAY, 2012, 15 (06) : 266 - 275