Time dependence of material properties of polyethylene glycol hydrogels chain extended with short hydroxy acid segments

被引:22
作者
Barati, Danial [1 ]
Moeinzadeh, Seyedsina [1 ]
Karaman, Ozan [1 ]
Jabbari, Esmaiel [1 ]
机构
[1] Univ S Carolina, Dept Chem Engn, Biomimet Mat & Tissue Engn Lab, Columbia, SC 29208 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Hydrogel chain extension; Hydroxy acids; Cell encapsulation; MESENCHYMAL STEM-CELLS; MARROW STROMAL CELLS; BULK-DEGRADATION MODEL; OSTEOGENIC DIFFERENTIATION; GELATION CHARACTERISTICS; NANOSTRUCTURE; PEPTIDES; POLYMERS; SCAFFOLD; NETWORKS;
D O I
10.1016/j.polymer.2014.05.045
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The objective of this work was to investigate the effect of chemical composition and segment number (n) on gelation, stiffness, and degradation of hydroxy acid-chain-extended star polyethylene glycol acrylate (SPEXA) gels. The hydroxy acids included glycolide (G), L-lactide (L), p-dioxanone (D) and c-caprolactone (C). Chain-extension generated water soluble macromers with faster gelation rates, lower sol fractions, higher compressive moduli, and a wide-ranging degradation times when crosslinked into a hydrogel. SPEGA gels with the highest fraction of inter-molecular crosslinks had the most increase in compressive modulus with n whereas SPELA and SPECA had the lowest increase in modulus. SPEXA gels exhibited a wide range of degradation times from a few days for SPEGA to a few weeks for SPELA, a few months for SPEDA, and many months for SPECA. Marrow stromal cells and endothelial progenitor cells had the highest expression of vasculogenic markers when co-encapsulated in the faster degrading SPELA gel. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3894 / 3904
页数:11
相关论文
共 50 条
[31]   Fundamental studies of a novel, biodegradable PEG-b-PLA hydrogel [J].
Metters, AT ;
Anseth, KS ;
Bowman, CN .
POLYMER, 2000, 41 (11) :3993-4004
[32]   Nanostructure Formation and Transition from Surface to Bulk Degradation in Polyethylene Glycol Gels Chain-Extended with Short Hydroxy Acid Segments [J].
Moeinzadeh, Seyedsina ;
Barati, Danial ;
Sarvestani, Samaneh K. ;
Karaman, Ozan ;
Jabbari, Esmaiel .
BIOMACROMOLECULES, 2013, 14 (08) :2917-2928
[33]   Gelation Characteristics and Osteogenic Differentiation of Stromal Cells in Inert Hydrolytically Degradable Micellar Polyethylene Glycol Hydrogels [J].
Moeinzadeh, Seyedsina ;
Barati, Danial ;
He, Xuezhong ;
Jabbari, Esmaiel .
BIOMACROMOLECULES, 2012, 13 (07) :2073-2086
[34]   Mesoscale Simulation of the Effect of a Lactide Segment on the Nanostructure of Star Poly(ethylene glycol-co-lactide)-Acrylate Macromonomers in Aqueous Solution [J].
Moeinzadeh, Seyedsina ;
Jabbari, Esmaiel .
JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (05) :1536-1543
[35]   Synthesis and gelation characteristics of photo-crosslinkable star Poly (ethylene oxide-co-lactide-glycolide acrylate) macromonomers [J].
Moeinzadeh, Seyedsina ;
Khorasani, Saied Nouri ;
Ma, Junyu ;
He, Xuezhong ;
Jabbari, Esmaiel .
POLYMER, 2011, 52 (18) :3887-3896
[36]   Encapsulated dental-derived mesenchymal stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering [J].
Moshaverinia, Alireza ;
Chen, Chider ;
Akiyama, Kentaro ;
Xu, Xingtian ;
Chee, Winston W. L. ;
Schricker, Scott R. ;
Shi, Songtao .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2013, 101 (11) :3285-3294
[37]   Biodegradable polymers as biomaterials [J].
Nair, Lakshmi S. ;
Laurencin, Cato T. .
PROGRESS IN POLYMER SCIENCE, 2007, 32 (8-9) :762-798
[38]   Cell encapsulation in biodegradable hydrogels for tissue engineering applications [J].
Nicodemus, Garret D. ;
Bryant, Stephanie J. .
TISSUE ENGINEERING PART B-REVIEWS, 2008, 14 (02) :149-165
[39]   Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers [J].
Nicolai, Taco ;
Colombani, Olivier ;
Chassenieux, Christophe .
SOFT MATTER, 2010, 6 (14) :3111-3118
[40]  
Peppas NA, 2004, HYDROGELS MED PHARM