Batwing-like polymer membrane consisting of PMMA-grafted electrospun PVdF-SiO2 nanocomposite fibers for lithium-ion batteries

被引:79
作者
Yang, C. L. [1 ]
Li, Z. H. [1 ]
Li, W. J. [1 ]
Liu, H. Y. [1 ]
Xiao, Q. Z. [1 ]
Lei, G. T. [1 ]
Ding, Y. H. [2 ]
机构
[1] Xiangtan Univ, Key Lab Environm Friendly Chem & Applicat, Minist Educ, Coll Chem, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Inst Fundamental Mech & Mat Engn, Xiangtan 411105, Hunan, Peoples R China
基金
湖南省自然科学基金;
关键词
Poly(vinylidene fluoride); Polymer membrane; Grafting; Electrospun; Lithium-ion batteries; TRANSFER RADICAL POLYMERIZATION; POLY(VINYLIDENE FLUORIDE); SURFACE MODIFICATION; HIGH-PERFORMANCE; PVDF MEMBRANES; GEL ELECTROLYTES; FLUORIDE-CO-HEXAFLUOROPROPYLENE); SEPARATORS; FABRICATION; BRUSHES;
D O I
10.1016/j.memsci.2015.08.036
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
To retain the electrolyte within the fibrous poly(vinylidene fluoride) (PVdF) membranes in a lithium-ion battery, poly(methylmethacrylate) (PMMA) was grafted onto electrospun SiO2-PVdF nanocomposite fibers via radical polymerization, producing a batwing-like polymer membrane. The obtained polymer membrane was activated with the electrolyte (1.0 M LiPF6 in a mixture of ethylene carbonate and diethylene carbonate) to form a fibrous gelled-polymer electrolyte (FGPE). The effects of grafting of PMMA on the morphology, mechanical properties, and electrochemical properties of the fibrous membranes were investigated. The SiO2-PVdF fibrous membrane that was grafted with 20 wt% of PMMA possessed an ionic conductivity of 2.31 x 10(-3) S cm(-1) at room temperature and a tensile strength of 8.2 MPa. The Li-LiFePO4 cells assembled by this FGPE delivered specific capacities of 156 and 130 mAh g(-1) at the rates of 0.1 and 2 C, respectively, and they retained 97% of the initial capacity at 0.1 C-rate after 90 cycles. The results indicate that FGPE is suitable for high-performance lithium-ion batteries. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:341 / 350
页数:10
相关论文
共 64 条
[1]   Electrospun Trilayer Polymeric Membranes as Separator for Lithium-ion Batteries [J].
Angulakshmi, N. ;
Stephan, A. Manuel .
ELECTROCHIMICA ACTA, 2014, 127 :167-172
[2]   Electrospun nanofibers: A prospective electro-active material for constructing high performance Li-ion batteries [J].
Aravindan, Vanchiappan ;
Sundaramurthy, Jayaraman ;
Kumar, Palaniswamy Suresh ;
Lee, Yun-Sung ;
Ramakrishna, Seeram ;
Madhavi, Srinivasan .
CHEMICAL COMMUNICATIONS, 2015, 51 (12) :2225-2234
[3]   Microporous PVdF gel for lithium-ion batteries [J].
Boudin, F ;
Andrieu, X ;
Jehoulet, C ;
Olsen, II .
JOURNAL OF POWER SOURCES, 1999, 81 :804-807
[4]   Controlled grafting from poly(vinylidene fluoride) microfiltration membranes via reverse atom transfer radical polymerization and antifouling properties [J].
Chen, Yiwang ;
Deng, Qian ;
Mao, Jichun ;
Nie, Huarong ;
Wu, Lichuan ;
Zhou, Weihua ;
Huang, Biwu .
POLYMER, 2007, 48 (26) :7604-7613
[5]   Surface modification of poly(vinylidene fluoride) films by controlled grafting polymer brushes [J].
Chen, YW ;
Liu, DM ;
Mang, N .
SURFACE REVIEW AND LETTERS, 2005, 12 (5-6) :709-712
[6]   An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications [J].
Choi, SW ;
Jo, SM ;
Lee, WS ;
Kim, YR .
ADVANCED MATERIALS, 2003, 15 (23) :2027-2032
[7]   Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications [J].
Costa, Carlos M. ;
Silva, Maria M. ;
Lanceros-Mendez, S. .
RSC ADVANCES, 2013, 3 (29) :11404-11417
[8]   Recent progress in fluoropolymers for membranes [J].
Cui, Zhaoliang ;
Drioli, Enrico ;
Lee, Young Moo .
PROGRESS IN POLYMER SCIENCE, 2014, 39 (01) :164-198
[9]   DEHYDROFLUORINATION OF POLY(VINYLIDENE FLUORIDE) IN DIMETHYLFORMAMIDE SOLUTION - SYNTHESIS OF AN OPERATIONALLY SOLUBLE SEMICONDUCTING POLYMER [J].
DIAS, AJ ;
MCCARTHY, TJ .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 1985, 23 (04) :1057-1061
[10]   Trends in polymer electrolytes for secondary lithium batteries [J].
Dias, FB ;
Plomp, L ;
Veldhuis, JBJ .
JOURNAL OF POWER SOURCES, 2000, 88 (02) :169-191