A New Class of Weak Encryption Exponents in RSA

被引:0
作者
Maitra, Subhamoy [1 ]
Sarkar, Santanu [1 ]
机构
[1] Indian Stat Inst, Kolkata 700108, India
来源
PROGRESS IN CRYPTOLOGY - INDOCRYPT 2008 | 2008年 / 5365卷
关键词
Cryptanalysis; Factorization; Lattice; LLL Algorithm;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Consider RSA with N = pq, q < p < 2q, public encryption exponent e and private decryption exponent d. We concentrate on the cases when e(= N-alpha) satisfies eX-ZY = 1, given vertical bar N-Z vertical bar = N-tau. Using the idea of Boneh and Durfee (Eurocrypt 1999, IEEE-IT 2000) we show that the LLL algorithm can be efficiently applied to get Z when vertical bar Y vertical bar = N-gamma and gamma < 4 alpha tau (1/4 tau + 1/12 alpha - root(1/4 tau + 1/12 alpha)(2) + 1/2 alpha tau (1/12 + tau/24 alpha - alpha/8 tau)). This idea substantially extends the class of weak keys presented by Nitaj (Africacrypt 2008) when Z = psi(p,q,u,v) = (p - u)(q - v). Further, we consider Z = psi(p, q, u, v) = N - pu - v to provide a new class of weak keys in RSA. This idea does not require any kind of factorization as used in Nitaj's work. A very conservative estimate for the number of such weak exponents is N0.75-epsilon, where epsilon > 0 is arbitrarily small for suitably large N.
引用
收藏
页码:337 / 349
页数:13
相关论文
共 15 条
[1]  
[Anonymous], 2003, Ph.D. thesis
[2]  
Blömer J, 2004, LECT NOTES COMPUT SC, V2947, P1
[3]  
Blömer J, 2001, LECT NOTES COMPUT SC, V2146, P4
[4]  
Boneh D, 1999, LECT NOTES COMPUT SC, V1592, P1
[5]   Cryptanalysis of RSA with private key d less than N0.292 [J].
Boneh, D ;
Durfee, G .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) :1339-1349
[6]  
BONEH D, 1999, NOT AM MATH SOC, V46, P203
[7]   Small solutions to polynomial equations, and low exponent RSA vulnerabilities [J].
Coppersmith, D .
JOURNAL OF CRYPTOLOGY, 1997, 10 (04) :233-260
[8]   Cryptanalysis of RSA with small prime difference [J].
de Weger, B .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2002, 13 (01) :17-28
[9]  
Jochemsz E., 2007, Cryptanalysis of RSA Variants Using Small roots of Polynomials
[10]   FACTORING POLYNOMIALS WITH RATIONAL COEFFICIENTS [J].
LENSTRA, AK ;
LENSTRA, HW ;
LOVASZ, L .
MATHEMATISCHE ANNALEN, 1982, 261 (04) :515-534