Palabos: Parallel Lattice Boltzmann Solver

被引:261
作者
Latt, Jonas [1 ,2 ]
Malaspinas, Orestis [1 ]
Kontaxakis, Dimitrios [2 ]
Parmigiani, Andrea [2 ]
Lagrava, Daniel [1 ]
Brogi, Federico [1 ]
Belgacem, Mohamed Ben [1 ]
Thorimbert, Yann [1 ]
Leclaire, Sebastien [1 ,3 ]
Li, Sha [1 ]
Marson, Francesco [1 ]
Lemus, Jonathan [1 ]
Kotsalos, Christos [1 ]
Conradin, Raphael [1 ]
Coreixas, Christophe [1 ]
Petkantchin, Remy [1 ]
Raynaud, Franck [1 ]
Beny, Joel [1 ]
Chopard, Bastien [1 ]
机构
[1] Univ Geneva, Dept Comp Sci, CH-1227 Carouge, Switzerland
[2] FlowKit Numeca Grp Ltd, Route dOron 2, CH-1010 Lausanne, Switzerland
[3] Polytech Montreal, Dept Mech Engn, 2500 Chemin Polytech, Montreal, PQ H3T 1J4, Canada
基金
瑞士国家科学基金会; 欧盟地平线“2020”;
关键词
Palabos; Lattice Boltzmann method; Open-source software; Computational Fluid Dynamics; High performance computing; ADAPTIVE MESH REFINEMENT; GRID REFINEMENT; BOUNDARY-CONDITIONS; MODEL; FLUID; FLOW; SIMULATION; IMPLEMENTATION;
D O I
10.1016/j.camwa.2020.03.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the scope, concepts, data structures and application programming models of the open-source Lattice Boltzmann library Palabos. Palabos is a C++ software platform developed since 2010 for Computational Fluid Dynamics simulations and Lattice Boltzmann modeling, which specifically targets applications with complex, coupled physics. The software proposes a very broad modeling framework, capable of addressing a large number of applications of interest in the Lattice Boltzmann community, yet exhibits solid computational performance. The article describes the philosophy of this programming framework and lists the models already implemented. Finally, benchmark simulations are provided which serve as a proof of quality of the implemented core functionalities. (C) 2020 The Author(s). Published by Elsevier Ltd.
引用
收藏
页码:334 / 350
页数:17
相关论文
共 59 条
[1]  
Barad M.F., 2017, 23 AIAA COMP FLUID D
[2]   MUSCLE-HPC: A new high performance API to couple multiscale parallel applications [J].
Ben Belgacem, Mohamed ;
Chopard, Bastien .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2017, 67 :72-82
[3]  
Beny J, 2018, CILAMCE 2018 P 39 IB
[4]   LOCAL ADAPTIVE MESH REFINEMENT FOR SHOCK HYDRODYNAMICS [J].
BERGER, MJ ;
COLELLA, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (01) :64-84
[5]   Entropic multirelaxation lattice Boltzmann models for turbulent flows [J].
Boesch, Fabian ;
Chikatamarla, Shyam S. ;
Karlin, Ilya V. .
PHYSICAL REVIEW E, 2015, 92 (04)
[6]   Computational performance of a parallelized three-dimensional high-order spectral element toolbox [J].
Bosshard, Christoph ;
Bouffanais, Roland ;
Deville, Michel ;
Gruber, Ralf ;
Latt, Jonas .
COMPUTERS & FLUIDS, 2011, 44 (01) :1-8
[7]   Momentum transfer of a Boltzmann-lattice fluid with boundaries [J].
Bouzidi, M ;
Firdaouss, M ;
Lallemand, P .
PHYSICS OF FLUIDS, 2001, 13 (11) :3452-3459
[8]   Hermite regularization of the lattice Boltzmann method for open source computational aeroacoustics [J].
Brogi, F. ;
Malaspinas, O. ;
Chopard, B. ;
Bonadonna, C. .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2017, 142 (04) :2332-2345
[9]   Grid refinement in lattice Boltzmann methods based on volumetric formulation [J].
Chen, H ;
Filippova, O ;
Hoch, J ;
Molvig, K ;
Shock, R ;
Teixeira, C ;
Zhang, R .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 362 (01) :158-167
[10]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364