An innovative modeling strategy for flexural response of fiber-reinforced stiffened composite structures

被引:4
|
作者
Islam, Azizul [1 ]
Sheikh, Abdul Hamid [1 ]
Bennett, Terry [1 ]
Thomsen, Ole Thybo [2 ,3 ]
机构
[1] Univ Adelaide, Sch Civil Environm & Min Engn, Adelaide, SA 5005, Australia
[2] Univ Bristol, Bristol Composites Inst, Bristol BS8 1TR, Avon, England
[3] Univ Bristol, Dept Aerosp Engn, Bristol BS8 1TR, Avon, England
关键词
Thin-walled structure; Stiffened composite plate; Finite element model; Foam-filled; Warping; FINITE-ELEMENT-ANALYSIS; FREE-VIBRATION; PLATES; PANELS; OPTIMIZATION; SIMULATION; DESIGN;
D O I
10.1016/j.tws.2022.108929
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The use of composite stiffened panels is common in a large variety of engineering structures. An advanced computational model is developed to accurately predict the complex behavior of laminated composite stiffened panels having thin-walled open or closed section stiffeners with in-filled materials. In the approach proposed, the plate and stiffeners are discretely modeled using 2D plate elements for the skin or plate, and 1D beam elements for the stiffeners, where the deformations of the stiffeners are completely expressed in terms of deformations of the plate to minimize the number of unknowns. The key novelty in this study is the model formulation of the stiffeners, which is based on a rigorous cross-sectional analysis to include all effects including out-of-plane and in-plane warping along with their couplings. To validate the proposed model, numerical examples of stiffened panels with different stiffener cross-sectional geometries and composite layups have been analyzed and benchmarked against results from the literature. Moreover, the predictions of the new model have also been successfully compared against detailed finite element model results to study the behavior of stiffened panel configurations, which are not available in the open literature. The results predicted by the proposed model confirmed a very good performance in terms of accuracy and range of applicability.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Structural simulation modeling of the fiber-reinforced concrete composite
    Kurbatov, Y. E.
    Kashevarova, G. G.
    VII INTERNATIONAL SYMPOSIUM ACTUAL PROBLEMS OF COMPUTATIONAL SIMULATION IN CIVIL ENGINEERING, 2018, 456
  • [22] Flexural Response of Marble Panels Strengthened with Fiber-Reinforced Polymer Laminates
    Malak, Sary A.
    Hachem, Ghassan G.
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2021, 25 (06)
  • [23] The response of a fiber-reinforced composite with a viscoelastic matrix phase
    DeBotton, G
    Tevet-Deree, L
    JOURNAL OF COMPOSITE MATERIALS, 2004, 38 (14) : 1255 - 1277
  • [24] Flexural Cracks in Fiber-Reinforced Concrete Beams with Fiber-Reinforced Polymer Reinforcing Bars
    Lee, Won K.
    Jansen, Daniel C.
    Berlin, Kenneth B.
    Cohen, Ian E.
    ACI STRUCTURAL JOURNAL, 2010, 107 (03) : 321 - 329
  • [25] Flexural Behaviors of glass fiber-reinforced polymer (GFRP) reinforced engineered cementitious composite beams
    Li, VC
    Wang, SX
    ACI MATERIALS JOURNAL, 2002, 99 (01) : 11 - 21
  • [26] Natural Fiber-Reinforced Mycelium Composite for Innovative and Sustainable Construction Materials
    Voutetaki, Maristella E.
    Mpalaskas, Anastasios C.
    FIBERS, 2024, 12 (07)
  • [27] The flexural properties of fiber-reinforced composite with light-polymerized polymer matrix
    Bae, JM
    Kim, KN
    Hattori, M
    Hasegawa, K
    Yoshinari, M
    Kawada, E
    Oda, Y
    INTERNATIONAL JOURNAL OF PROSTHODONTICS, 2001, 14 (01) : 33 - 39
  • [28] Investigating the Influence of Fiber Content and Geometry on the Flexural Response of Fiber-Reinforced Cementitious Composites
    Bzeni, Dillshad Khidhir
    JOURNAL OF COMPOSITES SCIENCE, 2024, 8 (09):
  • [29] Flexural Behaviors of ECC and Concrete/ECC Composite Beams Reinforced with Basalt Fiber-Reinforced Polymer
    Yuan, Fang
    Pan, Jinlong
    Leung, C. K. Y.
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2013, 17 (05) : 591 - 602
  • [30] Flexural behavior of composite beams of Kagome truss and fiber-reinforced cementitious composites
    Choi, Jeong-Il
    Park, Se-Eon
    Kim, Yun Yong
    Lee, Bang Yeon
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 361