Asymmetric resonance frequency analysis of in-plane electrothermal silicon cantilevers for nanoparticle sensors

被引:5
作者
Bertke, Maik [1 ,2 ]
Hamdana, Gerry [1 ,2 ]
Wu, Wenze [1 ,2 ]
Marks, Markus [1 ]
Wasisto, Hutomo Suryo [1 ,2 ]
Peiner, Erwin [1 ,2 ]
机构
[1] Braunschweig Univ Technol, Inst Semicond Technol IHT, Hans Sommer Str 66, D-38106 Braunschweig, Germany
[2] Lab Emerging Nanometrol LENA, Langer Kamp 6a, D-38106 Braunschweig, Germany
来源
27TH MICROMECHANICS AND MICROSYSTEMS EUROPE WORKSHOP (MME 2016) | 2016年 / 757卷
关键词
INDOOR;
D O I
10.1088/1742-6596/757/1/012006
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The asymmetric resonance frequency analysis of silicon cantilevers for a low-cost wearable airborne nanoparticle detector (Cantor) is described in this paper. The cantilevers, which are operated in the fundamental in-plane resonance mode, are used as a mass-sensitive microbalance. They are manufactured out of bulk silicon, containing a full piezoresistive Wheatstone bridge and an integrated thermal heater for reading the measurement output signal and stimulating the in-plane excitation, respectively. To optimize the sensor performance, cantilevers with different cantilever geometries are designed, fabricated and characterized. Besides the resonance frequency, the quality factor (Q) of the resonance curve has a high influence concerning the sensor sensitivity. Because of an asymmetric resonance behaviour, a novel fitting function and method to extract the Q is created, different from that of the simple harmonic oscillator (SHO). For testing the sensor in a long-term frequency analysis, a phase-locked loop (PLL) circuit is employed, yielding a frequency stability of up to 0.753 Hz at an Allan variance of 3.77 x 10(-6). This proposed asymmetric resonance frequency analysis method is expected to be further used in the process development of the next-generation Cantor.
引用
收藏
页数:6
相关论文
共 15 条
[1]   Thermal Excitation and Piezoresistive Detection of Cantilever In-Plane Resonance Modes for Sensing Applications [J].
Beardslee, Luke Armitage ;
Addous, Assim M. ;
Heinrich, Stephen ;
Josse, Fabien ;
Dufour, Isabelle ;
Brand, Oliver .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2010, 19 (04) :1015-1017
[2]  
Díaz-Soler Beatriz María, 2016, Dyna rev.fac.nac.minas, V83, P48, DOI 10.15446/dyna.v83n196.56608
[3]   Nanoparticle exposure at nanotechnology workplaces: A review [J].
Kuhlbusch, Thomas A. J. ;
Asbach, Christof ;
Fissan, Heinz ;
Goehler, Daniel ;
Stintz, Michael .
PARTICLE AND FIBRE TOXICOLOGY, 2011, 8
[4]   Analysis of the quality factor of AlN-actuated micro-resonators in air and liquid [J].
Manzaneque, Tomas ;
Hernando, J. ;
Rodriguez-Aragon, L. ;
Ababneh, A. ;
Seidel, H. ;
Schmid, U. ;
Sanchez-Rojas, J. L. .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2010, 16 (05) :837-845
[5]   Fano resonances in nanoscale structures [J].
Miroshnichenko, Andrey E. ;
Flach, Sergej ;
Kivshar, Yuri S. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (03) :2257-2298
[6]   Microfabricated air-microfluidic sensor for personal monitoring of airborne particulate matter: Design, fabrication, and experimental results [J].
Paprotny, Igor ;
Doering, Frederick ;
Solomon, Paul A. ;
White, Richard M. ;
Gundel, Lara A. .
SENSORS AND ACTUATORS A-PHYSICAL, 2013, 201 :506-516
[7]   Human health characterization factors of nano-TiO2 for indoor and outdoor environments [J].
Pini, Martina ;
Salieri, Beatrice ;
Ferrari, Anna Maria ;
Nowack, Bernd ;
Hischier, Roland .
INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2016, 21 (10) :1452-1462
[8]   Real-time single airborne nanoparticle detection with nanomechanical resonant filter-fiber [J].
Schmid, Silvan ;
Kurek, Maksymilian ;
Adolphsen, Jens Q. ;
Boisen, Anja .
SCIENTIFIC REPORTS, 2013, 3
[9]   Application of quartz tuning forks and extensional microresonators for viscosity and density measurements in oil/fuel mixtures [J].
Toledo, J. ;
Manzaneque, T. ;
Hernando-Garcia, J. ;
Vazquez, J. ;
Ababneh, A. ;
Seidel, H. ;
Lapuerta, M. ;
Sanchez-Rojas, J. L. .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2014, 20 (4-5) :945-953
[10]   Electrothermal piezoresistive cantilever resonators for personal measurements of nanoparticles in workplace exposure [J].
Wasist, Hutomo Suryo ;
Wu, Wenze ;
Uhde, Erik ;
Waag, Andreas ;
Peiner, Erwin .
SMART SENSORS, ACTUATORS, AND MEMS VII; AND CYBER PHYSICAL SYSTEMS, 2015, 9517