ANISOTROPIC ERROR ESTIMATES OF THE LINEAR NONCONFORMING VIRTUAL ELEMENT METHODS

被引:28
作者
Cao, Shuhao [1 ]
Chen, Long [1 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
virtual element methods; polytopal finite elements; anisotropic error analysis; nonconforming method; ORDER; EQUATIONS; MESHES;
D O I
10.1137/18M1196455
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A refined a priori error analysis of the lowest-order (linear) nonconforming virtual element method (VEM) for approximating a model Poisson problem is developed in both 2D and 3D. A set of new geometric assumptions is proposed on the shape regularity of polytopal meshes. A new error equation for the lowest-order (linear) nonconforming VEM is derived for any choice of stabilization, and a new stabilization using a projection on an extended element patch is introduced for the error analysis on anisotropic elements.
引用
收藏
页码:1058 / 1081
页数:24
相关论文
共 43 条
[11]   BASIC PRINCIPLES OF MIXED VIRTUAL ELEMENT METHODS [J].
Brezzi, F. ;
Falk, Richard S. ;
Marini, L. Donatella .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (04) :1227-1240
[12]   MIMETIC FINITE DIFFERENCES FOR ELLIPTIC PROBLEMS [J].
Brezzi, Franco ;
Buffa, Annalisa ;
Lipnikov, Konstantin .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (02) :277-295
[13]   CutFEM: Discretizing geometry and partial differential equations [J].
Burman, Erik ;
Claus, Susanne ;
Hansbo, Peter ;
Larson, Mats G. ;
Massing, Andre .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 104 (07) :472-501
[14]   Ghost penalty [J].
Burman, Erik .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (21-22) :1217-1220
[15]   Conforming and nonconforming virtual element methods for elliptic problems [J].
Cangiani, Andrea ;
Manzini, Gianmarco ;
Sutton, Oliver J. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (03) :1317-1354
[16]   ANISOTROPIC ERROR ESTIMATES OF THE LINEAR VIRTUAL ELEMENT METHOD ON POLYGONAL MESHES [J].
Cao, Shuhao ;
Chen, Long .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (05) :2913-2939
[17]   An a priori error analysis of the local discontinuous Galerkin method for elliptic problems [J].
Castillo, P ;
Cockburn, B ;
Perugia, I ;
Shötzau, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) :1676-1706
[18]   An interface-fitted mesh generator and virtual element methods for elliptic interface problems [J].
Chen, Long ;
Wei, Huayi ;
Wen, Min .
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 334 :327-348
[19]   BRIDGING THE HYBRID HIGH-ORDER AND HYBRIDIZABLE DISCONTINUOUS GALERKIN METHODS [J].
Cockburn, Bernardo ;
Di Pietro, Daniele A. ;
Ern, Alexandre .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (03) :635-650
[20]  
CROUZEIX M, 1973, REV FR AUTOMAT INFOR, V7, P33