ANISOTROPIC ERROR ESTIMATES OF THE LINEAR NONCONFORMING VIRTUAL ELEMENT METHODS

被引:28
作者
Cao, Shuhao [1 ]
Chen, Long [1 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
virtual element methods; polytopal finite elements; anisotropic error analysis; nonconforming method; ORDER; EQUATIONS; MESHES;
D O I
10.1137/18M1196455
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A refined a priori error analysis of the lowest-order (linear) nonconforming virtual element method (VEM) for approximating a model Poisson problem is developed in both 2D and 3D. A set of new geometric assumptions is proposed on the shape regularity of polytopal meshes. A new error equation for the lowest-order (linear) nonconforming VEM is derived for any choice of stabilization, and a new stabilization using a projection on an extended element patch is introduced for the error analysis on anisotropic elements.
引用
收藏
页码:1058 / 1081
页数:24
相关论文
共 43 条
[1]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[2]  
[Anonymous], 1978, STUDIES MATH ITS APP
[3]   Review of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated Domains [J].
Antonietti, Paola F. ;
Cangiani, Andrea ;
Collis, Joe ;
Dong, Zhaonan ;
Georgoulis, Emmanuil H. ;
Giani, Stefano ;
Houston, Paul .
BUILDING BRIDGES: CONNECTIONS AND CHALLENGES IN MODERN APPROACHES TO NUMERICAL PARTIAL DIFFERENTIAL EQUATIONS, 2016, 114 :281-310
[4]   High-order polygonal discontinuous Petrov-Galerkin (PolyDPG) methods using ultraweak formulations [J].
Astaneh, Ali Vaziri ;
Fuentes, Federico ;
Mora, Jaime ;
Demkowicz, Leszek .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 332 :686-711
[5]  
Beirao da Veiga L., 2014, MS A MODEL SIMUL AP, V11
[6]  
Beirao da Veiga L., 2012, MATH MOD METH APPL S, V23, P1
[7]   The virtual element method for discrete fracture network simulations [J].
Benedetto, Matias Fernando ;
Berrone, Stefano ;
Pieraccini, Sandra ;
Scialo, Stefano .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 280 :135-156
[8]   Orthogonal polynomials in badly shaped polygonal elements for the Virtual Element Method [J].
Berrone, S. ;
Borio, A. .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2017, 129 :14-31
[9]   ANALYSIS OF COMPATIBLE DISCRETE OPERATOR SCHEMES FOR ELLIPTIC PROBLEMS ON POLYHEDRAL MESHES [J].
Bonelle, Jerome ;
Ern, Alexandre .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (02) :553-581
[10]   Virtual element methods on meshes with small edges or faces [J].
Brenner, Susanne C. ;
Sung, Li-Yeng .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (07) :1291-1336