A new analytical approach for limit cycles and quasi-periodic solutions of nonlinear oscillators: the example of the forced Van der Pol Duffing oscillator

被引:22
作者
Shukla, Anant Kant [1 ]
Ramamohan, T. R. [1 ]
Srinivas, S. [2 ]
机构
[1] CSIR, CSIR Paradigm Inst 4, Bangalore 560037, Karnataka, India
[2] VIT Univ, Sch Adv Sci, Vellore 632014, Tamil Nadu, India
关键词
nonlinear oscillators; modified HAM; limit Cycle solutions; quasi-periodic solutions; HOMOTOPY ANALYSIS METHOD; EQUATION;
D O I
10.1088/0031-8949/89/7/075202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we propose a technique to obtain limit cycles and quasi-periodic solutions of forced nonlinear oscillators. We apply this technique to the forced Van der Pol oscillator and the forced Van der Pol Duffing oscillator and obtain for the first time their limit cycles (periodic) and quasi-periodic solutions analytically. We introduce a modification of the homotopy analysis method to obtain these solutions. We minimize the square residual error to obtain accurate approximations to these solutions. The obtained analytical solutions are convergent and agree well with numerical solutions even at large times. Time trajectories of the solution, its first derivative and phase plots are presented to confirm the validity of the proposed approach. We also provide rough criteria for the determination of parameter regimes which lead to limit cycle or quasi-periodic behaviour.
引用
收藏
页数:10
相关论文
共 41 条
[1]   Mathematical properties of h-curve in the frame work of the homotopy analysis method [J].
Abbasbandy, S. ;
Shivanian, E. ;
Vajravelu, K. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (11) :4268-4275
[2]   The homotopy analysis method and the Lienard equation [J].
Abbasbandy, S. ;
Lopez, J. L. ;
Lopez-Ruiz, R. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (01) :121-134
[3]  
Buonomo A, 1998, INT J CIRC THEOR APP, V26, P39, DOI 10.1002/(SICI)1097-007X(199801/02)26:1<39::AID-CTA6>3.0.CO
[4]  
2-X
[5]  
Cartwbight M., 1960, J. London Math. Soc, V1, P367, DOI [DOI 10.1112/JLMS/S1-35.3.367, 10.1112/jlms/s1-35.3.367]
[6]   Dynamics of elastic excitable media [J].
Cartwright, JHE ;
Eguíluz, VM ;
Hernández-García, E ;
Piro, O .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (11) :2197-2202
[7]   A new method based on the harmonic balance method for nonlinear oscillators [J].
Chen, Y. M. ;
Liu, J. K. .
PHYSICS LETTERS A, 2007, 368 (05) :371-378
[8]   Uniformly valid solution of limit cycle of the Duffing-van der Pol equation [J].
Chen, Y. M. ;
Liu, J. K. .
MECHANICS RESEARCH COMMUNICATIONS, 2009, 36 (07) :845-850
[9]   A study of homotopy analysis method for limit cycle of van der Pol equation [J].
Chen, Y. M. ;
Liu, J. K. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) :1816-1821
[10]   Optimal homotopy analysis method for nonlinear differential equations in the boundary layer [J].
Fan, Tao ;
You, Xiangcheng .
NUMERICAL ALGORITHMS, 2013, 62 (02) :337-354