Quasilinear Schrodinger equations with unbounded or decaying potentials

被引:8
作者
Severo, Uberlandio B. [1 ]
de Carvalho, Gilson M. [1 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, PB, Brazil
关键词
Quasilinear Schrodinger equations; unbounded or decaying potentials; weighted Orlicz Space; SCALAR FIELD-EQUATIONS; SOLITON-SOLUTIONS; ELLIPTIC-EQUATIONS; PERTURBATION METHOD; POSITIVE SOLUTIONS; RADIAL POTENTIALS; CRITICAL GROWTH; GROUND-STATES; R-N; EXISTENCE;
D O I
10.1002/mana.201600028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence of nonnegative and nonzero solutions for the following class of quasilinear Schrodinger equations: {-Delta u + v (vertical bar x vertical bar)u - [Delta(u(2))]u = Q(vertical bar x vertical bar)g(u), x is an element of R-N, u(x) -> 0 as vertical bar x vertical bar -> infinity, where V and Q are potentials that can be singular at the origin, unbounded or vanishing at infinity. In order to prove our existence result we used minimax techniques in a suitable weighted Orlicz space together with regularity arguments and we need to obtain a symmetric criticality type result.
引用
收藏
页码:492 / 517
页数:26
相关论文
共 38 条
[1]   Existence of solutions for a quasilinear Schrodinger equation with vanishing potentials [J].
Aires, Jose F. L. ;
Souto, Marco A. S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 416 (02) :924-946
[2]  
Ambrosetti A, 2005, J EUR MATH SOC, V7, P117
[3]  
[Anonymous], 1984, Applied Nonlinear Analysis.
[4]  
[Anonymous], 1993, MATH APPL BERLIN MAT
[5]  
[Anonymous], 1983, J EXP THEOR PHYS+
[6]  
Badiale M, 2006, REND LINCEI-MAT APPL, V17, P1
[7]   Compactness and existence results in weighted Sobolev spaces of radial functions. Part I: compactness [J].
Badiale, Marino ;
Guida, Michela ;
Rolando, Sergio .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) :1061-1090
[8]   INFINITELY MANY RADIAL SOLUTIONS OF A SEMILINEAR ELLIPTIC PROBLEM ON R(N) [J].
BARTSCH, T ;
WILLEM, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 124 (03) :261-276
[9]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[10]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313