Modeling Ethanol Decomposition on Transition Metals: A Combined Application of Scaling and Bronsted-Evans-Polanyi Relations

被引:277
作者
Ferrin, P. [1 ]
Simonetti, D. [1 ]
Kandoi, S. [1 ]
Kunkes, E. [1 ]
Dumesic, J. A. [1 ]
Norskov, J. K. [1 ,2 ]
Mavrikakis, M. [1 ]
机构
[1] Univ Wisconsin, Dept Chem & Biol Sci, Madison, WI 53706 USA
[2] Tech Univ Denmark, Dept Phys Nano DTU, Ctr Atom Scale Mat Design, DK-2800 Lyngby, Denmark
关键词
DENSITY-FUNCTIONAL THEORY; GAS SHIFT REACTION; OXYGEN REDUCTION; C-C; HETEROGENEOUS CATALYSIS; AMMONIA-SYNTHESIS; 1ST PRINCIPLES; MONOLAYER ELECTROCATALYSTS; ELECTRONIC-STRUCTURE; ALLOY CATALYSTS;
D O I
10.1021/ja8099322
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Applying density functional theory (DFT) calculations to the rational design of catalysts for complex reaction networks has been an ongoing challenge, primarily because of the high computational cost of there calculations. Certain correlations can be used to reduce the number and complexity of DFT calculations necessary to describe trends in activity and selectivity across metal and alloy surfaces, thus extending the reach of DFT to more complex systems. In-this work, the well-known family of Bronsted-Evans-Polanyi (BEP) correlations, connecting minima with maxima in the potential energy surface of elementary steps, in tandem with a scaling relation, connecting binding energies of complex adsorbates with those of simpler ones (e.g., C, O), is used to develop a potential-energy surface for ethanol decomposition on 10 transition metal surfaces. Using a simple kinetic model, the selectivity and activity on a subset of these surfaces are calculated. Experiments on supported catalysts verify that this simple model is reasonably accurate in describing reactivity trends across metals, suggesting that the combination of BEP and scaling relations may substantially reduce the cost of DFT calculations required for identifying reactivity descriptors of more complex reactions.
引用
收藏
页码:5809 / 5815
页数:7
相关论文
共 53 条
[1]   Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces [J].
Abild-Pedersen, F. ;
Greeley, J. ;
Studt, F. ;
Rossmeisl, J. ;
Munter, T. R. ;
Moses, P. G. ;
Skulason, E. ;
Bligaard, T. ;
Norskov, J. K. .
PHYSICAL REVIEW LETTERS, 2007, 99 (01)
[2]  
Afeefy H.Y., NIST CHEM WEBBOOK NI, V69
[3]   Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen [J].
Alayoglu, Selim ;
Nilekar, Anand U. ;
Mavrikakis, Manos ;
Eichhorn, Bryan .
NATURE MATERIALS, 2008, 7 (04) :333-338
[4]   DFT studies for cleavage of C-C and C-O bonds in surface species derived from ethanol on Pt(111) [J].
Alcalá, R ;
Mavrikakis, M ;
Dumesic, JA .
JOURNAL OF CATALYSIS, 2003, 218 (01) :178-190
[5]   Density-functional theory studies of acetone and propanal hydrogenation on Pt(111) [J].
Alcalá, R ;
Greeley, J ;
Mavrikakis, M ;
Dumesic, JA .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (20) :8973-8980
[6]   Toward computational screening in heterogeneous catalysis: Pareto-optimal methanation catalysts [J].
Andersson, MP ;
Bligaard, T ;
Kustov, A ;
Larsen, KE ;
Greeley, J ;
Johannessen, T ;
Christensen, CH ;
Norskov, JK .
JOURNAL OF CATALYSIS, 2006, 239 (02) :501-506
[7]   LINEAR FREE-ENERGY RELATIONSHIPS FOR C1-OXYGENATE DECOMPOSITION ON TRANSITION-METAL SURFACES [J].
BARTEAU, MA .
CATALYSIS LETTERS, 1991, 8 (2-4) :175-184
[8]   The Bronsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis [J].
Bligaard, T ;
Norskov, JK ;
Dahl, S ;
Matthiesen, J ;
Christensen, CH ;
Sehested, J .
JOURNAL OF CATALYSIS, 2004, 224 (01) :206-217
[9]   Molecular beam studies of ethanol oxidation on Pd(110) [J].
Bowker, M ;
Holroyd, RP ;
Sharpe, RG ;
Corneille, JS ;
Francis, SM ;
Goodman, DW .
SURFACE SCIENCE, 1997, 370 (2-3) :113-124
[10]   SPECIAL POINTS IN BRILLOUIN ZONE [J].
CHADI, DJ ;
COHEN, ML .
PHYSICAL REVIEW B, 1973, 8 (12) :5747-5753