An optimization framework to improve 4D-Var data assimilation system performance

被引:12
作者
Cioaca, Alexandru [1 ]
Sandu, Adrian [1 ]
机构
[1] Virginia Tech, Dept Comp Sci, Sci Computat Lab, Blacksburg, VA 24060 USA
基金
美国国家科学基金会;
关键词
Data assimilation; Sensitivity analysis; Optimal sensor design; Adaptive observations; ADJOINT SENSITIVITY; 2ND-ORDER ADJOINTS; ERROR; ALGORITHM; EQUATIONS; DIAGNOSIS; CONTEXT;
D O I
10.1016/j.jcp.2014.07.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper develops a computational framework for optimizing the parameters of data assimilation systems in order to improve their performance. The approach formulates a continuous meta-optimization problem for parameters; the meta-optimization is constrained by the original data assimilation problem. The numerical solution process employs adjoint models and iterative solvers. The proposed framework is applied to optimize observation values, data weighting coefficients, and the location of sensors for a test problem. The ability to optimize a distributed measurement network is crucial for cutting down operating costs and detecting malfunctions. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:377 / 389
页数:13
相关论文
共 50 条
[1]   Targeting of observations for accidental atmospheric release monitoring [J].
Abida, Rachid ;
Bocquet, Marc .
ATMOSPHERIC ENVIRONMENT, 2009, 43 (40) :6312-6327
[2]  
Alexe M., 2010, Proceedings of the 2010 Spring Simulation Multiconference, P85
[3]  
Anastasiou K, 1997, INT J NUMER METH FL, V24, P1225, DOI 10.1002/(SICI)1097-0363(19970615)24:11<1225::AID-FLD540>3.0.CO
[4]  
2-D
[5]  
[Anonymous], 2003, ATMOSPHERIC MODELING
[6]  
[Anonymous], 2009, DATA ASSIMILATION AT
[7]  
[Anonymous], 2006, Dynamic Data Assimilation: a Least Squares Approach
[8]   Atmospheric observations and experiments to assess their usefulness in data assimilation [J].
Atlas, R .
JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 1997, 75 (1B) :111-130
[9]   Observation and background adjoint sensitivity in the adaptive observation-targeting problem [J].
Baker, NL ;
Daley, R .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2000, 126 (565) :1431-1454
[10]  
Berliner LM, 1999, J ATMOS SCI, V56, P2536, DOI 10.1175/1520-0469(1999)056<2536:SDFAWO>2.0.CO