Ultrafast depinning of domain walls in notched antiferromagnetic nanostructures

被引:15
作者
Chen, Z. Y. [1 ,2 ]
Qin, M. H. [1 ,2 ]
Liu, J-M [3 ,4 ]
机构
[1] South China Normal Univ, Inst Adv Mat, South China Acad Adv Optoelect, Guangzhou 510006, Guangdong, Peoples R China
[2] South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Guangdong, Peoples R China
[3] Nanjing Univ, Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[4] Nanjing Univ, Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
关键词
MOTION;
D O I
10.1103/PhysRevB.100.020402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The pinning/depinning of an antiferromagnetic (AFM) domain wall is certainly the core issue for AFM spintronic device operation. In this work, we study theoretically the Neel-type domain wall pinning/depinning at a notch in an AFM nanostructure (nanoribbon). The depinning field depending on the notch dimension and intrinsic material properties is deduced and also numerically calculated. Contrary to conventional conception, it is revealed that the depinning field is remarkably dependent on the damping constant and the time-dependent oscillation of domain wall position in the weakly damping regime benefits to the wall depinning, resulting in a gradual saturation of the depinning field with increasing damping constant. A one-dimensional model accounting of the internal dynamics of the domain wall is used to explain perfectly the simulated results. It is demonstrated that the depinning mechanism of an AFM domain wall differs from the ferromagnetic domain wall by exhibiting a depinning typically three orders of magnitude faster than the latter, unveiling another origin for ultrafast dynamics of an AFM system.
引用
收藏
页数:5
相关论文
共 39 条
[1]   Magnetic domain-wall logic [J].
Allwood, DA ;
Xiong, G ;
Faulkner, CC ;
Atkinson, D ;
Petit, D ;
Cowburn, RP .
SCIENCE, 2005, 309 (5741) :1688-1692
[2]   Quantitative Determination of the Nonlinear Pinning Potential for a Magnetic Domain Wall [J].
Bedau, D. ;
Klaeui, M. ;
Hua, M. T. ;
Krzyk, S. ;
Ruediger, U. ;
Faini, G. ;
Vila, L. .
PHYSICAL REVIEW LETTERS, 2008, 101 (25)
[3]   Antidamping-Torque-Induced Switching in Biaxial Antiferromagnetic Insulators [J].
Chen, X. Z. ;
Zarzuela, R. ;
Zhang, J. ;
Song, C. ;
Zhou, X. F. ;
Shi, G. Y. ;
Li, F. ;
Zhou, H. A. ;
Jiang, W. J. ;
Pan, F. ;
Tserkovnyak, Y. .
PHYSICAL REVIEW LETTERS, 2018, 120 (20)
[4]   Microwave fields driven domain wall motions in antiferromagnetic nanowires [J].
Chen, Z. Y. ;
Yan, Z. R. ;
Zhang, Y. L. ;
Qin, M. H. ;
Fan, Z. ;
Lu, X. B. ;
Gao, X. S. ;
Liu, J-M .
NEW JOURNAL OF PHYSICS, 2018, 20
[5]   Anisotropic magnetoresistance in an antiferromagnetic semiconductor [J].
Fina, I. ;
Marti, X. ;
Yi, D. ;
Liu, J. ;
Chu, J. H. ;
Rayan-Serrao, C. ;
Suresha, S. ;
Shick, A. B. ;
Zelezny, J. ;
Jungwirth, T. ;
Fontcuberta, J. ;
Ramesh, R. .
NATURE COMMUNICATIONS, 2014, 5
[6]   Antiferromagnetic spin textures and dynamics [J].
Gomonay, O. ;
Baltz, V. ;
Brataas, A. ;
Tserkovnyak, Y. .
NATURE PHYSICS, 2018, 14 (03) :213-216
[7]   Manipulating antiferromagnets with magnetic fields: Ratchet motion of multiple domain walls induced by asymmetric field pulses [J].
Gomonay, O. ;
Klaeui, M. ;
Sinova, J. .
APPLIED PHYSICS LETTERS, 2016, 109 (14)
[8]   High Antiferromagnetic Domain Wall Velocity Induced by Neel Spin-Orbit Torques [J].
Gomonay, O. ;
Jungwirth, T. ;
Sinova, J. .
PHYSICAL REVIEW LETTERS, 2016, 117 (01)
[9]   Imaging Current-Induced Switching of Antiferromagnetic Domains in CuMnAs [J].
Grzybowski, M. J. ;
Wadley, P. ;
Edmonds, K. W. ;
Beardsley, R. ;
Hills, V. ;
Campion, R. P. ;
Gallagher, B. L. ;
Chauhan, J. S. ;
Novak, V. ;
Jungwirth, T. ;
Maccherozzi, F. ;
Dhesi, S. S. .
PHYSICAL REVIEW LETTERS, 2017, 118 (05)
[10]   Dependence of current and field driven depinning of domain walls on their structure and chirality in permalloy nanowires [J].
Hayashi, Masamitsu ;
Thomas, Luc ;
Rettner, Charles ;
Moriya, Rai ;
Jiang, Xin ;
Parkin, Stuart S. P. .
PHYSICAL REVIEW LETTERS, 2006, 97 (20)