Subconvexity for a double Dirichlet series and non-vanishing of L-functions

被引:1
作者
Dahl, Alexander [1 ]
机构
[1] York Univ, Dept Math & Stat, 4700 Keele St, Toronto, ON M3J 1P3, Canada
基金
欧洲研究理事会;
关键词
Double-Dirichlet series; subconvexity; non-vanishing; EISENSTEIN SERIES; MEAN-VALUE;
D O I
10.1142/S1793042118500951
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a double Dirichlet series of the form Sigma(d) L(s, chi(d)chi)chi' (d)d(-w), where chi and chi' are quadratic Dirichlet characters with prime conductors N and M respectively. A functional equation group isomorphic to the dihedral group of order 6 continues the function meromorphically to C-2. The developed theory is used to prove an upper bound for the smallest positive integer d such that L(1/2, chi(dN)) does not vanish. Additionally, a convexity bound at the central point is established to be (MN)(3/8+epsilon) and a subconvexity bound of (MN(M + N))(1/)(6+epsilon) is proven. An application of bounds at the central point to the non-vanishing problem is also discussed.
引用
收藏
页码:1573 / 1604
页数:32
相关论文
共 12 条
[1]   Subconvexity for a double Dirichlet series [J].
Blomer, Valentin .
COMPOSITIO MATHEMATICA, 2011, 147 (02) :355-374
[2]   Weyl group multiple Dirichlet series III:: Eisenstein series and twisted unstable Ar [J].
Brubaker, B. ;
Bump, D. ;
Friedberg, S. ;
Hoffstein, J. .
ANNALS OF MATHEMATICS, 2007, 166 (01) :293-316
[3]  
Brubaker B, 2006, P SYMP PURE MATH, V75, P91
[4]  
Bump D., 2004, SUMS TWISTED GL 3 AU
[5]   Multiple Dirichlet series and moments of zeta and L-functions [J].
Diaconu, A ;
Goldfeld, D ;
Hoffstein, J .
COMPOSITIO MATHEMATICA, 2003, 139 (03) :297-360
[6]   EISENSTEIN SERIES OF 1/2-INTEGRAL WEIGHT AND THE MEAN-VALUE OF REAL DIRICHLET L-SERIES [J].
GOLDFELD, D ;
HOFFSTEIN, J .
INVENTIONES MATHEMATICAE, 1985, 80 (02) :185-208
[7]  
HEATHBROWN DR, 1995, ACTA ARITH, V72, P235
[8]  
Hoffstein J., 2010, 1 NONVANISHING QUADR
[9]  
Iwaniec H., 2004, Colloquium Publications
[10]  
Jutila M., 1981, Analysis, V1, P149