Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing

被引:129
作者
Tang, Xu [1 ]
Ren, Qiurong [1 ]
Yang, Lijia [1 ]
Bao, Yu [2 ,3 ]
Zhong, Zhaohui [1 ]
He, Yao [1 ]
Liu, Shishi [1 ]
Qi, Caiyan [1 ]
Liu, Binglin [1 ]
Wang, Yan [1 ]
Sretenovic, Simon [4 ]
Zhang, Yingxiao [4 ]
Zheng, Xuelian [1 ]
Zhang, Tao [2 ,3 ]
Qi, Yiping [4 ,5 ]
Zhang, Yong [1 ,3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Life Sci & Technol, Dept Biotechnol, Ctr Informat Biol, Chengdu, Sichuan, Peoples R China
[2] Yangzhou Univ, Jiangsu Key Lab Crop Genet & Physiol, Jiangsu Coinnovat Ctr Modern Prod Technol Grain C, Jiangsu Key Lab Crop Genom & Mol Breeding,Coll Ag, Yangzhou, Jiangsu, Peoples R China
[3] Yangzhou Univ, Joint Int Res Lab Agr & Agri Prod Safety, Key Lab Plant Funct Genom, Minist Educ, Yangzhou, Jiangsu, Peoples R China
[4] Univ Maryland, Dept Plant Sci & Landscape Architecture, College Pk, MD 20742 USA
[5] Univ Maryland, Inst Biosci & Biotechnol, Rockville, MD 20850 USA
基金
美国国家科学基金会;
关键词
rice; single transcript unit; CRISPR-Cas9; CRISPR-Cas12a; base editing; TARGETED MUTAGENESIS; HOMOLOGOUS RECOMBINATION; DNA REPLICONS; RNA; GENE; RICE; BASE; CPF1; ARABIDOPSIS; NUCLEASES;
D O I
10.1111/pbi.13068
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
CRISPR-Cas9 and Cas12a are two powerful genome editing systems. Expression of CRISPR in plants is typically achieved with a mixed dual promoter system, in which Cas protein is expressed by a Pol II promoter and a guide RNA is expressed by a species-specific Pol III promoter such as U6 or U3. To achieve coordinated expression and compact vector packaging, it is desirable to express both CRISPR components under a single Pol II promoter. Previously, we demonstrated a first-generation single transcript unit (STU)-Cas9 system, STU-Cas9-RZ, which is based on hammerhead ribozyme for processing single guide RNAs (sgRNAs). In this study, we developed two new STU-Cas9 systems and one STU-Cas12a system for applications in plants, collectively called the STU CRISPR 2.0 systems. We demonstrated these systems for genome editing in rice with both transient expression and stable transgenesis. The two STU-Cas9 2.0 systems process the sgRNAs with Csy4 ribonuclease and endogenous tRNA processing system respectively. Both STU-Cas9-Csy4 and STU-Cas9-tRNA systems showed more robust genome editing efficiencies than our first-generation STU-Cas9-RZ system and the conventional mixed dual promoter system. We further applied the STU-Cas9-tRNA system to compare two C to T base editing systems based on rAPOBEC1 and PmCDA1 cytidine deaminases. The results suggest STU-based PmCDA1 base editor system is highly efficient in rice. The STU-Cas12a system, based on Cas12a' self-processing of a CRISPR RNA (crRNA) array, was also developed and demonstrated for expression of a single crRNA and four crRNAs. Altogether, our STU CRISPR 2.0 systems further expanded the CRISPR toolbox for plant genome editing and other applications.
引用
收藏
页码:1431 / 1445
页数:15
相关论文
共 87 条
[11]   Biallelic Gene Targeting in Rice [J].
Endo, Masaki ;
Mikami, Masafumi ;
Toki, Seiichi .
PLANT PHYSIOLOGY, 2016, 170 (02) :667-677
[12]   The Cpf1 CRISPR-Cas protein expands genome-editing tools [J].
Fagerlund, Robert D. ;
Staals, Raymond H. J. ;
Fineran, Peter C. .
GENOME BIOLOGY, 2015, 16
[13]   Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana [J].
Fauser, Friedrich ;
Schiml, Simon ;
Puchta, Holger .
PLANT JOURNAL, 2014, 79 (02) :348-359
[14]   Multiplexed CRISPR/Cas9 Genome Editing and Gene Regulation Using Csy4 in Saccharomyces cerevisiae [J].
Ferreira, Raphael ;
Skrekas, Christos ;
Nielsen, Jens ;
David, Florian .
ACS SYNTHETIC BIOLOGY, 2018, 7 (01) :10-15
[15]   The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA [J].
Fonfara, Ines ;
Richter, Hagen ;
Bratovic, Majda ;
Le Rhun, Anais ;
Charpentier, Emmanuelle .
NATURE, 2016, 532 (7600) :517-+
[16]   Programmable base editing of A.T to G.C in genomic DNA without DNA cleavage [J].
Gaudelli, Nicole M. ;
Komor, Alexis C. ;
Rees, Holly A. ;
Packer, Michael S. ;
Badran, Ahmed H. ;
Bryson, David I. ;
Liu, David R. .
NATURE, 2017, 551 (7681) :464-+
[17]   An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities [J].
Gehrke, Jason M. ;
Cervantes, Oliver ;
Clement, M. Kendell ;
Wu, Yuxuan ;
Zeng, Jing ;
Bauer, Daniel E. ;
Pinello, Luca ;
Joung, J. Keith .
NATURE BIOTECHNOLOGY, 2018, 36 (10) :977-+
[18]   High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9 [J].
Gil-Humanes, Javier ;
Wang, Yanpeng ;
Liang, Zhen ;
Shan, Qiwei ;
Ozuna, Carmen V. ;
Sanchez-Leon, Susana ;
Baltes, Nicholas J. ;
Starker, Colby ;
Barro, Francisco ;
Gao, Caixia ;
Voytas, Daniel F. .
PLANT JOURNAL, 2017, 89 (06) :1251-1262
[19]   Sequence- and Structure-Specific RNA Processing by a CRISPR Endonuclease [J].
Haurwitz, Rachel E. ;
Jinek, Martin ;
Wiedenheft, Blake ;
Zhou, Kaihong ;
Doudna, Jennifer A. .
SCIENCE, 2010, 329 (5997) :1355-1358
[20]   Self-cleaving ribozymes enable the production of guide RNAs from unlimited choices of promoters for CRISPR/Cas9 mediated genome editing [J].
He, Yubing ;
Zhang, Tao ;
Yang, Ning ;
Xu, Meilian ;
Yan, Lang ;
Wang, Lihao ;
Wang, Rongchen ;
Zhao, Yunde .
JOURNAL OF GENETICS AND GENOMICS, 2017, 44 (09) :469-472