Tuning the demodulation frequency based on a normalized trajectory model for mobile underwater acoustic communications

被引:10
作者
Ahmad, Abdel-Mehsen [1 ,2 ]
Barbeau, Michel [3 ]
Garcia-Alfaro, Joaquin [4 ]
Kassem, Jamil [1 ,4 ]
Kranakis, Evangelos [3 ]
机构
[1] Lebanese Int Univ, Sch Engn, Bekaa, Lebanon
[2] Int Univ Beirut, Sch Engn, Beirut, Lebanon
[3] Carleton Univ, Sch Comp Sci, Ottawa, ON, Canada
[4] Inst Mines Telecom, CNRS Samovar UMR 5157, Inst Polytech Paris, Telecom SudParis, 9 Rue Charles Fourier, F-91000 Evry, France
基金
加拿大自然科学与工程研究理事会;
关键词
DOPPLER-SHIFT ESTIMATION; NETWORKS; CHANNELS; SYSTEMS; DESIGN;
D O I
10.1002/ett.3712
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
We have developed a demodulator for low data rate, asynchronous frame, and narrow bandwidth underwater acoustic communication. We aim at operation under harsh conditions, ie, low signal-to-noise ratio, and across long distances. In this paper, we pay a special attention to the efficiency of mobility support. Mobility results into the Doppler effect, which, for a demodulator, makes the carrier frequency drift arbitrarily during attempts to decode frames. The chances of success are better when the demodulator can tune into the drifted carrier frequency. This can be achieved by trying a range of possible drifted carriers. We introduce the novel idea of normalized trajectory. Each normalized trajectory produces a unique Doppler shift pattern that can be applied to tune into a drifted carrier. We demonstrate that this improvement is theoretically sound. From a practical point of view, the search space is potentially reduced. The actual gain in performance is application-specific and depends on the actual sets of trajectory parameters that are considered. We introduce the concept of normalized trajectory, discuss its integration into the demodulator, and review the performance of the new design.
引用
收藏
页数:15
相关论文
共 60 条
[1]  
Abougamila S, 2018, P 2018 IEEE 43 C LOC
[2]   Doppler Effect in the Acoustic Ultra Low Frequency Band for Wireless Underwater Networks [J].
Ahmad, A. -M. ;
Kassem, J. ;
Barbeau, M. ;
Kranakis, E. ;
Porretta, S. ;
Garcia-Alfaro, J. .
MOBILE NETWORKS & APPLICATIONS, 2018, 23 (05) :1282-1292
[3]   Doppler Effect in the Underwater Acoustic Ultra Low Frequency Band [J].
Ahmad, Abdel-Mehsen ;
Barbeau, Michel ;
Garcia-Alfaro, Joaquin ;
Kassem, Jamil ;
Kranakis, Evangelos ;
Porretta, Steven .
AD HOC NETWORKS, ADHOCNETS 2017, 2018, 223 :3-12
[4]   Low Frequency Mobile Communications in Underwater Networks [J].
Ahmad, Abdel-Mehsen ;
Barbeau, Michel ;
Garcia-Alfaro, Joaquin ;
Kassem, Jamil ;
Kranakis, Evangelos ;
Porretta, Steven .
AD-HOC, MOBILE, AND WIRELESS NETWORKS (ADHOC-NOW 2018), 2018, 11104 :239-251
[5]   Low Complexity Residual Doppler Shift Estimation for Underwater Acoustic Multicarrier Communication [J].
Amar, Alon ;
Avrashi, Gilad ;
Stojanovic, Milica .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (08) :2063-2076
[6]  
Antonelli G., 2018, Underwater Robots, VVolume 123, DOI 10.1007/978-3-319-77899-0
[7]  
Barbeau M, 2017, P 7 GNU RAD C SAN DI, P1
[8]   Design of a Low-Cost Underwater Acoustic Modem [J].
Benson, Bridget ;
Li, Ying ;
Faunce, Brian ;
Domond, Kenneth ;
Kimball, Don ;
Schurgers, Curt ;
Kastner, Ryan .
IEEE EMBEDDED SYSTEMS LETTERS, 2010, 2 (03) :58-61
[9]   Advances in research on the impacts of anti-submarine sonar on beaked whales [J].
Bernaldo de Quiros, Y. ;
Fernandez, A. ;
Baird, R. W. ;
Brownell, R. L., Jr. ;
Aguilar de Soto, N. ;
Allen, D. ;
Arbelo, M. ;
Arregui, M. ;
Costidis, A. ;
Fahlman, A. ;
Frantzis, A. ;
Gulland, F. M. D. ;
Iniguez, M. ;
Johnson, M. ;
Komnenou, A. ;
Koopman, H. ;
Pabst, D. A. ;
Roe, W. D. ;
Sierra, E. ;
Tejedor, M. ;
Schorr, G. .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2019, 286 (1895)
[10]  
Blouin S, 2017, VEH TECHNOL CONFE