Polarized infrared reflectance study of free standing cubic GaN grown by molecular beam epitaxy

被引:5
|
作者
Lee, S. C. [1 ,2 ]
Ng, S. S. [1 ]
Abu Hassan, H. [1 ]
Hassan, Z. [1 ]
Zainal, N. [1 ]
Novikov, S. V. [3 ]
Foxon, C. T. [3 ]
Kent, A. J. [3 ]
机构
[1] Univ Sains Malaysia, Sch Phys, Nanooptoelect Res Lab, George Town 11800, Malaysia
[2] Univ Malaya, Fac Sci, Dept Phys, Kuala Lumpur 50603, Malaysia
[3] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
Nitrides; Fourier transform infrared spectroscopy (FTIR); Optical properties; Phonons; Dielectric properties; III-NITRIDE SEMICONDUCTORS; OPTICAL PHONON FREQUENCIES; PHASE-TRANSITION; LATTICE-DYNAMICS; GALLIUM NITRIDE; SELF-ENERGY; ZINCBLENDE; GAAS; WURTZITE; MODES;
D O I
10.1016/j.matchemphys.2014.03.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Optical properties of free standing cubic gallium nitride grown by molecular beam epitaxy system are investigated by a polarized infrared (IR) reflectance technique. A strong reststrahlen band, which reveals the bulk-like optical phonon frequencies, is observed. Meanwhile, continuous oscillation fringes, which indicate the sample consists of two homogeneous layers with different dielectric constants, are observed in the non-reststrahlen region. By obtaining the first derivative of polarized IR reflectance spectra measured at higher angles of incidence, extra phonon resonances are identified at the edges of the reststrahlen band. The observations are verified with the theoretical results simulated based on a multi-oscillator model. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:121 / 128
页数:8
相关论文
共 50 条
  • [1] Optical Properties of Cubic GaN Quantum Dots Grown by Molecular Beam Epitaxy
    Blumenthal, Sarah
    Reuter, Dirk
    As, Donat J.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2018, 255 (05):
  • [2] Thermal properties of cubic GaN/GaAs heterostructures grown by molecular beam epitaxy
    Macias, Marcos
    Lucero Casallas-Moreno, Yenny
    Camacho-Reynoso, Marlene
    Alberto Zambrano-Serrano, Mario
    Guadalupe Perez-Hernandez, Briseida
    Yee-Rendon, C. M.
    Gurevich, Yuri G.
    Lopez-Lopez, Maximo
    Cruz-Orea, Alfredo
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (13)
  • [3] Zinc-blende (cubic) GaN bulk crystals grown by molecular beam epitaxy
    Novikov, S. V.
    Foxon, C. T.
    Kent, A. J.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 8, NO 5, 2011, 8 (05): : 1439 - 1444
  • [4] Doping of free-standing zinc-blende GaN layers grown by molecular beam epitaxy
    Novikov, S. V.
    Powell, R. E. L.
    Staddon, C. R.
    Kent, A. J.
    Foxon, C. T.
    JOURNAL OF CRYSTAL GROWTH, 2014, 403 : 43 - 47
  • [5] A study of cracking in GaN grown on silicon by molecular beam epitaxy
    Jothilingam, R
    Koch, MW
    Posthill, JB
    Wicks, GW
    JOURNAL OF ELECTRONIC MATERIALS, 2001, 30 (07) : 821 - 824
  • [6] A study of cracking in GaN grown on silicon by molecular beam epitaxy
    R. Jothilingam
    M. W. Koch
    J. B. Posthill
    G. W. Wicks
    Journal of Electronic Materials, 2001, 30 : 821 - 824
  • [7] Photoluminescence study of Si doping cubic GaN grown on (001) GaAs substrates by molecular beam epitaxy
    Li, ZQ
    Chen, H
    Liu, HF
    Wan, L
    Huang, Q
    Zhou, JM
    JOURNAL OF CRYSTAL GROWTH, 2001, 227 : 420 - 424
  • [8] Polarized infrared reflectance studies for wurtzite InN epilayers on Si(111) grown by molecular beam expitaxy
    Ooi, P. K.
    Lee, S. C.
    Ng, S. S.
    Hassan, Z.
    Abu Hassan, H.
    Chen, W. L.
    THIN SOLID FILMS, 2011, 520 (02) : 739 - 742
  • [9] Study of Nonpolar GaN/ZnO Heterostructures Grown by Molecular Beam Epitaxy
    Chang, Chiao-Yun
    Huang, Huei-Min
    Lan, Yu-Pin
    Lu, Tien-Chang
    Tu, Li-Wei
    Hsieh, Wen-Feng
    CRYSTAL GROWTH & DESIGN, 2013, 13 (07) : 3098 - 3102
  • [10] Stacked Self-Assembled Cubic GaN Quantum Dots Grown by Molecular Beam Epitaxy
    Blumenthal, Sarah
    Rieger, Torsten
    Meertens, Doris
    Pawlis, Alexander
    Reuter, Dirk
    As, Donat J.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2018, 255 (03):