Average Update Times for Fully-Dynamic All-Pairs Shortest Paths

被引:0
|
作者
Friedrich, Tobias [1 ]
Hebbinghaus, Nils [1 ]
机构
[1] Max Planck Inst Informat, Saarbrucken, Germany
来源
ALGORITHMS AND COMPUTATION, PROCEEDINGS | 2008年 / 5369卷
关键词
Dynamic graph algorithms; shortest paths; average-case analysis; random graphs;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the fully-dynamic all pairs shortest path problem for graphs with arbitrary non-negative edge weights. It is known for digraphs that an update of the distance matrix costs (O) over tilde (n(2.75))(1) worst-case time [Thorup, STOC '05) and (O) over tilde (n(2)) amortized time [Demetrescu and Italiano, JACM '04] where n is the number of vertices. We present the first average-case analysis of the undirected problem. For a random update we show that the expected time per update is bounded by O(n(4/3+epsilon)) for all epsilon > 0.
引用
收藏
页码:692 / 703
页数:12
相关论文
共 38 条