Tautological stable pair invariants of Calabi-Yau 4-folds

被引:8
作者
Cao, Yalong [1 ]
Toda, Yukinobu [2 ]
机构
[1] RIKEN Interdisciplinary Theoret & Math Sci Progra, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[2] Univ Tokyo, Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan
基金
日本学术振兴会;
关键词
Tautological insertions; Stable pairs; Gopakumar-Vafa invariants; Calabi-Yau; 4-folds; SHEAVES;
D O I
10.1016/j.aim.2021.108176
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Calabi-Yau 4-fold and D a smooth divisor on it. We consider tautological complex associated with L = O-X (D) on the moduli space of Le Potier stable pairs and define its counting invariant by integrating the Euler class against the virtual class. We conjecture a formula for their generating series expressed using genus zero Gopakumar-Vafa invariants of D and genus one Gopakumar-Vafa type invariants of X, which we verify in several examples. When X is the local resolved conifold, our conjecture reproduces a conjectural formula of Cao-Kool-Monavari in the PT chamber. In the JS chamber, we completely determine the invariants and use it to confirm one of our previous conjectures. (C)& nbsp;2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:44
相关论文
共 35 条
[1]   THE MOMENT MAP AND EQUIVARIANT CO-HOMOLOGY [J].
ATIYAH, MF ;
BOTT, R .
TOPOLOGY, 1984, 23 (01) :1-28
[2]   The intrinsic normal cone [J].
Behrend, K ;
Fantechi, B .
INVENTIONES MATHEMATICAE, 1997, 128 (01) :45-88
[3]  
Bondal A., ARXIVALG GEOM 950601
[4]   Virtual fundamental classes for moduli spaces of sheaves on Calabi-Yau four-folds [J].
Borisov, Dennis ;
Joyce, Dominic .
GEOMETRY & TOPOLOGY, 2017, 21 (06) :3231-3311
[5]   Fourier-Mukai transforms for K3 and elliptic fibrations [J].
Bridgeland, T ;
Maciocia, A .
JOURNAL OF ALGEBRAIC GEOMETRY, 2002, 11 (04) :629-657
[6]  
Cao Y., 2022, ADV MATH, DOI DOI 10.1016/J.AIM.2022.108531
[7]  
Cao Y., ARXIV190607856
[8]  
Cao Y., ARXIV14077659
[9]  
Cao Y., ARXIV200910909
[10]   Stable Pair Invariants of Local Calabi-Yau 4-folds [J].
Cao, Yalong ;
Kool, Martijn ;
Monavari, Sergej .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (06) :4753-4797