Estimating optimal parameters for MRF stereo from a single image pair

被引:52
作者
Zhang, Li
Seitz, Steven M.
机构
[1] Columbia Univ, Comp Sci Dept, New York, NY 10027 USA
[2] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
stereo matching; parameter setting; Markov Random Fields;
D O I
10.1109/TPAMI.2007.36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel approach for estimating the parameters for MRF-based stereo algorithms. This approach is based on a new formulation of stereo as a maximum a posterior (MAP) problem in which both a disparity map and MRF parameters are estimated from the stereo pair itself. We present an iterative algorithm for the MAP estimation that alternates between estimating the parameters while fixing the disparity map and estimating the disparity map while fixing the parameters. The estimated parameters include robust truncation thresholds for both data and neighborhood terms, as well as a regularization weight. The regularization weight can be either a constant for the whole image or spatially-varying, depending on local intensity gradients. In the latter case, the weights for intensity gradients are also estimated. Our approach works as a wrapper for existing stereo algorithms based on graph cuts or belief propagation, automatically tuning their parameters to improve performance without requiring the stereo code to be modified. Experiments demonstrate that our approach moves a baseline belief propagation stereo algorithm up six slots in the Middlebury rankings.
引用
收藏
页码:331 / 342
页数:12
相关论文
共 29 条
[1]   Large occlusion stereo [J].
Bobick, AF ;
Intille, SS .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1999, 33 (03) :181-200
[2]   Fast approximate energy minimization via graph cuts [J].
Boykov, Y ;
Veksler, O ;
Zabih, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (11) :1222-1239
[3]   GATES: A grid-based middleware for processing distributed data streams [J].
Chen, L ;
Reddy, K ;
Agrawal, G .
13TH IEEE INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE DISTRIBUTED COMPUTING, PROCEEDINGS, 2004, :192-201
[4]  
Felzenszwalb PR, 2004, PROC CVPR IEEE, P261
[5]  
FREEMAN W, 2003, P NIPS, P1335
[6]   Learning low-level vision [J].
Freeman, WT ;
Pasztor, EC ;
Carmichael, OT .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2000, 40 (01) :25-47
[7]  
Fua P., 1993, Machine Vision and Applications, V6, P35, DOI 10.1007/BF01212430
[8]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[9]   Fully Bayesian estimation of Gibbs hyperparameters for emission computed tomography data [J].
Higdon, DM ;
Bowsher, JE ;
Johnson, VE ;
Turkington, TG ;
Gilland, DR ;
Jaszczak, RJ .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1997, 16 (05) :516-526
[10]   A STEREO MATCHING ALGORITHM WITH AN ADAPTIVE WINDOW - THEORY AND EXPERIMENT [J].
KANADE, T ;
OKUTOMI, M .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (09) :920-932