Arbuscular mycorrhizal fungi regulate soil respiration and its response to precipitation change in a semiarid steppe

被引:51
作者
Zhang, Bingwei [1 ,2 ]
Li, Shan [1 ,2 ]
Chen, Shiping [1 ]
Ren, Tingting [1 ]
Yang, Zhiqiang [1 ,2 ]
Zhao, Hanlin [1 ]
Liang, Yu [1 ]
Han, Xingguo [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Appl Ecol, State Key Lab Forest & Soil Ecol, Shenyang 110164, Peoples R China
基金
中国国家自然科学基金;
关键词
CLIMATE-CHANGE; INTERANNUAL VARIABILITY; CARBON SEQUESTRATION; ELEVATED CO2; NITROGEN; TEMPERATURE; DIVERSITY; EFFLUX; AGGREGATION; COMMUNITIES;
D O I
10.1038/srep19990
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Arbuscular mycorrhizal fungi (AMF) are critical links in plant-soil continuum and play a critical role in soil carbon cycles. Soil respiration, one of the largest carbon fluxes in global carbon cycle, is sensitive to precipitation change in semiarid ecosystems. In this study, a field experiment with fungicide application and water addition was conducted during 2010-2013 in a semiarid steppe in Inner Mongolia, China, and soil respiration was continuously measured to investigate the influences of AMF on soil respiration under different precipitation regimes. Results showed that soil respiration was promoted by water addition treatment especially during drought seasons, which induced a nonlinear response of soil respiration to precipitation change. Fungicide application suppressed AMF root colonization without impacts on soil microbes. AMF suppression treatment accelerated soil respiration with 2.7, 28.5 and 37.6 g Cm-2 across three seasons, which were mainly caused by the enhanced heterotrophic component. A steeper response of soil respiration rate to precipitation was found under fungicide application treatments, suggesting a greater dampening effect of AMF on soil carbon release as water availability increased. Our study highlighted the importance of AMF on soil carbon stabilization and sequestration in semiarid steppe ecosystems especially during wet seasons.
引用
收藏
页数:10
相关论文
共 60 条
[1]   Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem [J].
Antoninka, Anita ;
Reich, Peter B. ;
Johnson, Nancy Collins .
NEW PHYTOLOGIST, 2011, 192 (01) :200-214
[2]   Temperature dependence of respiration in roots colonized by arbuscular mycorrhizal fungi [J].
Atkin, Owen K. ;
Sherlock, David ;
Fitter, Alastair H. ;
Jarvis, Susan ;
Hughes, John K. ;
Campbell, Catherine ;
Hurry, Vaughan ;
Hodge, Angela .
NEW PHYTOLOGIST, 2009, 182 (01) :188-199
[3]   Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes [J].
Bahn, M. ;
Reichstein, M. ;
Davidson, E. A. ;
Gruenzweig, J. ;
Jung, M. ;
Carbone, M. S. ;
Epron, D. ;
Misson, L. ;
Nouvellon, Y. ;
Roupsard, O. ;
Savage, K. ;
Trumbore, S. E. ;
Gimeno, C. ;
Curiel Yuste, J. ;
Tang, J. ;
Vargas, R. ;
Janssens, I. A. .
BIOGEOSCIENCES, 2010, 7 (07) :2147-2157
[4]  
Bao YuYing Bao YuYing, 2004, Biodiversity Science, V12, P501
[5]   VESICULAR-ARBUSCULAR MYCORRHIZAE OF SOUTHERN ONTARIO FERNS AND FERN-ALLIES [J].
BERCH, SM ;
KENDRICK, B .
MYCOLOGIA, 1982, 74 (05) :769-776
[6]  
Butler D. G., 2009, ASREML user guide release 3.0
[7]   Soil texture drives responses of soil respiration to precipitation pulses in the Sonoran Desert: Implications for climate change [J].
Cable, Jessica M. ;
Ogle, Kiona ;
Williams, David G. ;
Weltzin, Jake F. ;
Huxman, Travis E. .
ECOSYSTEMS, 2008, 11 (06) :961-979
[8]   Disruption of a belowground mutualism alters interactions between plants and their floral visitors [J].
Cahill, James F., Jr. ;
Elle, Elizabeth ;
Smith, Glen R. ;
Shore, Bryon H. .
ECOLOGY, 2008, 89 (07) :1791-1801
[9]   Arbuscular mycorrhizas and their role in plant growth, nitrogen interception and soil gas efflux in an organic production system [J].
Cavagnaro, T. R. ;
Barrios-Masias, F. H. ;
Jackson, L. E. .
PLANT AND SOIL, 2012, 353 (1-2) :181-194
[10]   Arbuscular Mycorrhizal Fungi Increase Organic Carbon Decomposition Under Elevated CO2 [J].
Cheng, Lei ;
Booker, Fitzgerald L. ;
Tu, Cong ;
Burkey, Kent O. ;
Zhou, Lishi ;
Shew, H. David ;
Rufty, Thomas W. ;
Hu, Shuijin .
SCIENCE, 2012, 337 (6098) :1084-1087