Co@Co3O4 Core-Shell Three-Dimensional Nano-Network for High-Performance Electrochemical Energy Storage

被引:50
作者
Zhang, Junli [1 ]
Fu, Jiecai [1 ]
Zhang, Junwei [1 ]
Ma, Hongbin [1 ]
He, Yongmin [1 ]
Li, Fashen [1 ]
Xie, Erqing [1 ]
Xue, Desheng [1 ]
Zhang, Haoli [2 ]
Peng, Yong [1 ]
机构
[1] Lanzhou Univ, Minist Educ, Key Lab Magnetism & Magnet Mat, Lanzhou 730000, Gansu, Peoples R China
[2] Lanzhou Univ, State Key Lab Appl Organ Chem, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
SUPERCAPACITOR; ARRAYS; NANOSTRUCTURES; COMPOSITES; DEPOSITION;
D O I
10.1002/smll.201303926
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An alternative routine is presented by constructing a novel architecture, conductive metal/transition oxide (Co@Co3O4) core-shell three-dimensional nano-network (3DN) by surface oxidating Co 3DN in situ, for high-performance electrochemical capacitors. It is found that the Co@Co3O4 core-shell 3DN consists of petal-like nanosheets with thickness of <10 nm interconnected forming a 3D porous nanostructure, which preserves the original morphology of Co 3DN well. X-ray photoelectron spectroscopy by polishing the specimen layer by layer reveals that the Co@Co3O4 nano-network is core-shell-like structure. In the application of electrochemical capacitors, the electrodes exhibit a high specific capacitance of 1049 F g(-1) at scan rate of 2 mV/s with capacitance retention of similar to 52.05% (546 F g(-1) at scan rate of 100 mV) and relative high areal mass density of 850 F g(-1) at areal mass of 3.52 mg/cm(2). It is believed that the good electrochemical behaviors mainly originate from its extremely high specific surface area and underneath core-Co "conductive network". The high specifi c surface area enables more electroactive sites for efficient Faradaic redox reactions and thus enhances ion and electron diffusion. The underneath core-Co "conductive network" enables an ultrafast electron transport.
引用
收藏
页码:2618 / 2624
页数:7
相关论文
共 32 条
[1]   Redox coupled ion exchange in cobalt oxide films [J].
Barbero, C ;
Planes, GA ;
Miras, MC .
ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (03) :113-116
[2]  
Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
[3]   Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors [J].
Choi, Nam-Soon ;
Chen, Zonghai ;
Freunberger, Stefan A. ;
Ji, Xiulei ;
Sun, Yang-Kook ;
Amine, Khalil ;
Yushin, Gleb ;
Nazar, Linda F. ;
Cho, Jaephil ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) :9994-10024
[4]   3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection [J].
Dong, Xiao-Chen ;
Xu, Hang ;
Wang, Xue-Wan ;
Huang, Yin-Xi ;
Chan-Park, Mary B. ;
Zhang, Hua ;
Wang, Lian-Hui ;
Huang, Wei ;
Chen, Peng .
ACS NANO, 2012, 6 (04) :3206-3213
[5]  
Frackowiak EdE., 2013, Supercapacitors: Materials, Systems and Applications
[6]   Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam [J].
Gao, Yinyi ;
Chen, Shuli ;
Cao, Dianxue ;
Wang, Guiling ;
Yin, Jinling .
JOURNAL OF POWER SOURCES, 2010, 195 (06) :1757-1760
[7]   Atomic-Layer-Deposition-Assisted Formation of Carbon Nanoflakes on Metal Oxides and Energy Storage Application [J].
Guan, Cao ;
Zeng, Zhiyuan ;
Li, Xianglin ;
Cao, Xiehong ;
Fan, Yu ;
Xia, Xinhui ;
Pan, Guoxiang ;
Zhang, Hua ;
Fan, Hong Jin .
SMALL, 2014, 10 (02) :300-307
[8]   Freestanding Three-Dimensional Graphene/MnO2 Composite Networks As Ultra light and Flexible Supercapacitor Electrodes [J].
He, Yongmin ;
Chen, Wanjun ;
Li, Xiaodong ;
Zhang, Zhenxing ;
Fu, Jiecai ;
Zhao, Changhui ;
Xie, Erqing .
ACS NANO, 2013, 7 (01) :174-182
[9]  
John F. M., 1992, PERKIN ELMER CORPORA, V40, P82
[10]  
Kim S.-I., 2013, ACS APPL MAT INTERFA