Solutions around a regular a singular point of a sequential conformable fractional differential equation

被引:0
作者
Unal, Emrah [1 ]
Gokdogan, Ahmet [2 ]
Celik, Ercan [3 ]
机构
[1] Artvin Coruh Univ, Dept Elementary Math Educ, Fac Educ, TR-08100 Artvin, Turkey
[2] Gumushane Univ, Fac Sci & Engn, Dept Engn Math, TR-29100 Gumushane, Turkey
[3] Ataturk Univ, Dept Math, Fac Sci, TR-25100 Erzurum, Turkey
关键词
Conformable fractional derivative; fractional power series; regular a singular point; sequential conformable fractional differential equation; series solutions;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, firstly, some concepts of conformable fractional calculus in literature are given. Secondly, definitions of alpha-analytic point, a-ordinary point and regular a singular point are presented. Finally, the fractional power series solutions are given around a regular-singular point, in the case of variable coefficients for homogeneous sequential linear conformable fractional differential equations of order 2 alpha.
引用
收藏
页码:9 / 16
页数:8
相关论文
共 21 条
  • [1] Abdeljawad T., 2015, J. Semigroup Theory Appl, V2015, P1
  • [2] On conformable fractional calculus
    Abdeljawad, Thabet
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 : 57 - 66
  • [3] Abu Hammad M, 2014, International Journal of Applied Mathematical Research, P214, DOI DOI 10.14419/IJAMR.V3I3.2747
  • [4] Abu Hammad M., 2014, Int. J. Differ. Equ. Appl., V13, P177
  • [5] [Anonymous], 1993, INTRO FRACTIONAL CA
  • [6] [Anonymous], 1999, FRACTIONAL DIFFERENT
  • [7] [Anonymous], 2015, Electron. J. Differ. Equ
  • [8] Batarfi H., 2015, J FUNCTION SPACES, V2015, P1
  • [9] A conformable fractional calculus on arbitrary time scales
    Benkhettou, Nadia
    Hassani, Salima
    Torres, Delfim F. M.
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) : 93 - 98
  • [10] Fractional Newton mechanics with conformable fractional derivative
    Chung, Won Sang
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 : 150 - 158