Theory of electronic and optical properties for different shapes of InAs/In0.52Al0.48As quantum wires

被引:15
作者
Bouazra, A. [1 ]
Abdi-Ben Nasrallah, S. [1 ]
Said, M. [1 ]
机构
[1] Fac Sci Monastir, Dept Phys, LMCN, Monastir 5019, Tunisia
关键词
InAs/InAlAs; Quantum wire; Coordinate transformation; Finite difference method; Transition energy; Oscillator strengths; COORDINATE TRANSFORMATION; HOLE STATES; CONFINEMENT; SPECTROSCOPY; INP(001); ENERGY; DOTS;
D O I
10.1016/j.physe.2015.09.039
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, we propose an efficient method to investigate optical properties as well as their dependence on geometrical parameters in InAs/InAlAs quantum wires. The used method is based on the coordinate transformation and the finite difference method. It provides sufficient accuracy, stability and flexibility with respect to the size and shape of the quantum wire. The electron and hole energy levels as well as their corresponding wave functions are investigated for different shape of quantum wires. The optical transition energies, the emission wavelengths and the oscillator strengths are also studied. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:272 / 279
页数:8
相关论文
共 25 条
[1]   Application of coordinate transformation and finite differences method for electron and hole states calculations [J].
Bouazra, A. ;
Abdi-Ben Nasrallah, S. ;
Said, M. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2015, 65 :93-99
[2]   Numerical modeling of the InAs quantum dot with application of coordinate transformation and the finite difference method [J].
Bouazra, A. ;
Mnasri, S. ;
Abdi-Ben Nasrallah, S. ;
Said, M. .
COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (04) :1290-1298
[3]   Numerical simulation of a coupling effect on electronic states in quantum dots [J].
Bouazra, A. ;
Nasrallah, S. Abdi-Ben ;
Poncet, A. ;
Said, M. .
SUPERLATTICES AND MICROSTRUCTURES, 2010, 48 (01) :1-8
[4]   Numerical simulation of coupling effect on electronic states in quantum wires [J].
Bouazra, A. ;
Nasrallah, S. Abdi-Ben ;
Poncet, A. ;
Bouazra, Y. ;
Said, M. .
EUROPEAN PHYSICAL JOURNAL B, 2009, 67 (02) :245-250
[5]   Approximate methods for the solution of quantum wires and dots: Connection rules between pyramidal, cuboidal, and cubic dots [J].
Califano, M ;
Harrison, P .
JOURNAL OF APPLIED PHYSICS, 1999, 86 (09) :5054-5059
[6]   Microphotoluminescence spectroscopy of vertically stacked InxGa1-xAs/GaAs quantum wires [J].
Cingolani, R ;
Sogawa, F ;
Arakawa, Y ;
Rinaldi, R ;
DeVittorio, M ;
Passaseo, A ;
Taurino, A ;
Catalano, M ;
Vasanelli, L .
PHYSICAL REVIEW B, 1998, 58 (04) :1962-1966
[7]   Electron and hole states in V-groove quantum wires: an effective potential calculation [J].
Creci, G ;
Weber, G .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1999, 14 (08) :690-694
[8]   Infrared spectroscopy of self-organized InAs nanostructures grown on InAlAs/InP(001) for infrared photodetection applications [J].
Fossard, F ;
Julien, FH ;
Péronne, E ;
Alexandrou, A ;
Brault, J ;
Gendry, M .
INFRARED PHYSICS & TECHNOLOGY, 2001, 42 (3-5) :443-451
[9]   Low-pressure organometallic chemical vapor deposition of quantum wires on V-grooved substrates [J].
Gustafsson, A ;
Reinhardt, F ;
Biasiol, G ;
Kapon, E .
APPLIED PHYSICS LETTERS, 1995, 67 (25) :3673-3675
[10]   Faceting evolution during self-assembling of InAs/InP quantum wires [J].
Gutiérrez, HR ;
Cotta, MA ;
de Carvalho, MMG .
APPLIED PHYSICS LETTERS, 2001, 79 (23) :3854-3856