Markov Chain Monte Carlo Detection for Underwater Acoustic Channels

被引:0
|
作者
Wan, Hong [1 ]
Chen, Rong-Rong [1 ]
Choi, Jun Won [2 ]
Singer, Andrew [2 ]
Preisig, James [3 ]
Farhang-Boroujeny, Behrouz [1 ]
机构
[1] Univ Utah, Dept ECE, Salt Lake City, UT 84112 USA
[2] Univ Illinois, Dept ECE, Urbana, IL 61801 USA
[3] Woods Hole Oceanog Inst, Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work, we develop novel statistical detectors to combat intersymbol interference for frequency selective channels based on Markov Chain Monte Carlo (MCMC) techniques. While the optimal maximum a posteriori (MAP) detector has a complexity that grows exponentially with the constellation size and the memory of the channel, the MCMC detector can achieve near optimal performance with a complexity that grows linearly. This makes the MCMC detector particularly attractive for underwater acoustic channels with long delay spread. We examine the effectiveness of the MCMC detector using actual data collected from underwater experiments. When combined with adaptive least mean square (LMS) channel estimation, the MCMC detector achieves superior performance over the direct adaptation LMS turbo equalizers (LMS-TEQ) for a majority of data sets transmitted over distances from 60 meters to 1000 meters.
引用
收藏
页码:44 / 48
页数:5
相关论文
共 50 条
  • [41] Gambling with the truth: Markov chain Monte Carlo
    Kendall, WS
    CHALLENGES FOR THE 21ST CENTURY, 2000, : 83 - 101
  • [42] An introduction to Markov chain Monte Carlo methods
    Besag, J
    MATHEMATICAL FOUNDATIONS OF SPEECH AND LANGUAGE PROCESSING, 2004, 138 : 247 - 270
  • [43] THE BOOTSTRAP AND MARKOV-CHAIN MONTE CARLO
    Efron, Bradley
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2011, 21 (06) : 1052 - 1062
  • [44] MARKOV CHAIN SIMULATION FOR MULTILEVEL MONTE CARLO
    Jasra, Ajay
    Law, Kody J. H.
    Xu, Yaxian
    FOUNDATIONS OF DATA SCIENCE, 2021, 3 (01): : 27 - 47
  • [45] On the Markov Chain Monte Carlo (MCMC) method
    Rajeeva L. Karandikar
    Sadhana, 2006, 31 : 81 - 104
  • [46] Markov Chain Monte Carlo methods1. Simple Monte Carlo
    K B Athreya
    Mohan Delampady
    T Krishnan
    Resonance, 2003, 8 (4) : 17 - 26
  • [47] Markov Chain Monte Carlo in small worlds
    Guan, YT
    Fleissner, R
    Joyce, P
    Krone, SM
    STATISTICS AND COMPUTING, 2006, 16 (02) : 193 - 202
  • [48] MCMCpack: Markov Chain Monte Carlo in R
    Martin, Andrew D.
    Quinn, Kevin M.
    Park, Jong Hee
    JOURNAL OF STATISTICAL SOFTWARE, 2011, 42 (09): : 1 - 21
  • [49] Parallel Markov chain Monte Carlo simulations
    Ren, Ruichao
    Orkoulas, G.
    JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (21):
  • [50] A Markov chain Monte Carlo approach to stereovision
    Sénégas, J
    COMPUTER VISION - ECCV 2002 PT III, 2002, 2352 : 97 - 111