Nonlinear conditions for weighted composition operators between Lipschitz algebras

被引:7
作者
Burgos, Maria [2 ]
Jimenez-Vargas, A. [1 ]
Villegas-Vallecillos, Moises [1 ]
机构
[1] Univ Almeria, Dept Algebra & Anal Matemat, Almeria 04120, Spain
[2] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
关键词
Lipschitz algebra; *-Isomorphism; Range-preserving map; Peaking function; Peripheral range; UNIFORM ALGEBRAS; BANACH-ALGEBRAS; ISOMORPHISMS; SPECTRUM; SURJECTIONS; MAPS;
D O I
10.1016/j.jmaa.2009.05.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T : Lip(0)(X) -> Lip(0)(Y) be a surjective map between pointed Lipschitz *-algebras. where X and Y are compact metric spaces. On the one hand, we prove that if T satisfies the non-symmetric norm *-multiplicativity condition: parallel to T(f)<(T(g))over bar> - 1 parallel to(infinity) = parallel to f (g) over bar - 1 parallel to(infinity) (f, g is an element of Lip(0)(X)), then T is of the form T(f) = tau.(eta.(f circle phi) + (1 - eta).<((f circle phi))over bar>) (f is an element of Lip(0)(X)), where eta and tau are functions on Y such that eta(Y) subset of {0, 1} and tau(Y) subset of {alpha is an element of K: vertical bar alpha vertical bar = 1}, and phi : Y -> X is a base point preserving Lipschitz homeomorphism. On the other hand, if T satisfies the weakly peripherally *-multiplicativity condition: Ran(pi)(f (g) over bar) boolean AND Ran(pi) (T(f)<(T(g))over bar>) not equal 0 (f, g is an element of Lip(0)(X)), where Ran(pi)(f) denotes the peripheral range of f, then T can be expressed as T(f) = tau . (f circle phi) (f is an element of Lip(0)(X)), with tau and phi as above. As a consequence, we obtain similar descriptions for surjective maps between Lipschitz *-algebras Lip(X). (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 16 条
[1]  
[Anonymous], 1969, Introduction to Function Algebra
[2]   Characterizations of isometric isomorphisms between uniform algebras via nonlinear range-preserving properties [J].
Hatori, O ;
Miura, T ;
Takagi, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (10) :2923-2930
[3]  
HATORI O, TOKYO J MAT IN PRESS
[4]  
HATORI O, MULTIPLICATIVELY SPE
[5]   Unital and multiplicatively spectrum-preserving surjections between semi-simple commutative Banach algebras are linear and multiplicative [J].
Hatori, Osamu ;
Miura, Takeshi ;
Takagi, Hiroyuki .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (01) :281-296
[6]  
HONMA D, ROCKY MOUNT IN PRESS
[7]  
Honma D, 2007, CONTEMP MATH, V435, P199
[8]   Lipschitz algebras and peripherally-multiplicative maps [J].
Jimenez-Vargas, A. ;
Villegas-Vallecillos, Moises .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (08) :1233-1242
[9]  
JIMENEZVARGAS A, ROCKY MOUNT IN PRESS
[10]  
Lambert S, 2007, CONTEMP MATH, V435, P265