Direct-drive measurements of laser-imprint-induced shock velocity nonuniformities

被引:20
|
作者
Peebles, J. L. [1 ]
Hu, S. X. [1 ]
Theobald, W. [1 ]
Goncharov, V. N. [1 ]
Whiting, N. [1 ]
Celliers, P. M. [2 ]
Ali, S. J. [2 ]
Duchateau, G. [3 ]
Campbell, E. M. [1 ]
Boehly, T. R. [1 ]
Regan, S. P. [1 ]
机构
[1] Univ Rochester, Lab Laser Energet, 250 E River Rd, Rochester, NY 14623 USA
[2] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA
[3] Univ Bordeaux, CNRS, CEA, Ctr Lasers Intenses & Applicat,UMR 5107, F-33405 Talence, France
关键词
RAYLEIGH-TAYLOR EXPERIMENTS; HIGH-POWER; INSTABILITY; DISPERSION; RADIOGRAPHY; IRRADIATION; PERFORMANCE; IONIZATION; REDUCTION; SPECKLE;
D O I
10.1103/PhysRevE.99.063208
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Perturbations in the velocity profile of a laser-ablation-driven shock wave seeded by speckle in the spatial beam intensity (i.e., laser imprint) have been measured. Direct measurements of these velocity perturbations were recorded using a two-dimensional high-resolution velocimeter probing plastic material shocked by a 100-ps picket laser pulse from the OMEGA laser system. The measured results for experiments with one, two, and five overlapping beams incident on the target clearly demonstrate a reduction in long-wavelength (> 25-mu m) perturbations with an increasing number of overlapping laser beams, consistent with theoretical expectations. These experimental measurements are crucial to validate radiation-hydrodynamics simulations of laser imprint for laser direct drive inertial confinement fusion research since they highlight the significant (factor of 3) underestimation of the level of seeded perturbation when the microphysics processes for initial plasma formation, such as multiphoton ionization are neglected.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Measurements of laser-imprint-induced shock velocity nonuniformities in plastic targets with the Nike KrF laser
    Oh, Jaechul
    Schmitt, Andrew J.
    Karasik, Max
    Obenschain, Stephen P.
    PHYSICS OF PLASMAS, 2021, 28 (03)
  • [2] Direct-drive shock-ignition for the Laser MegaJoule
    Canaud, B.
    Brandon, V.
    Laffite, S.
    Temporal, M.
    Ramis, R.
    IFSA 2011 - SEVENTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, 2013, 59
  • [3] Rarefaction Flows and Mitigation of Imprint in Direct-Drive Implosions
    Igumenshchev, I., V
    Velikovich, A. L.
    Goncharov, V. N.
    Betti, R.
    Campbell, E. M.
    Knauer, J. P.
    Regan, S. P.
    Schmitt, A. J.
    Shah, R. C.
    Shvydky, A.
    PHYSICAL REVIEW LETTERS, 2019, 123 (06)
  • [4] Systematic analysis of direct-drive baseline designs for shock ignition with the Laser MegaJoule
    Brandon, V.
    Canaud, B.
    Laffite, S.
    Temporal, M.
    Ramis, R.
    IFSA 2011 - SEVENTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, 2013, 59
  • [5] Mitigating Laser Imprint in Direct-Drive Inertial Confinement Fusion Implosions with High-Z Dopants
    Hu, S. X.
    Fiksel, G.
    Goncharov, V. N.
    Skupsky, S.
    Meyerhofer, D. D.
    Smalyuk, V. A.
    PHYSICAL REVIEW LETTERS, 2012, 108 (19)
  • [6] Direct-drive laser fusion: Status and prospects
    Bodner, SE
    Colombant, DG
    Gardner, JH
    Lehmberg, RH
    Obenschain, SP
    Phillips, L
    Schmitt, AJ
    Sethian, JD
    McCrory, RL
    Seka, W
    Verdon, CP
    Knauer, JP
    Afeyan, BB
    Powell, HT
    PHYSICS OF PLASMAS, 1998, 5 (05) : 1901 - 1918
  • [7] Direct-drive laser fusion: status and prospects
    Phys Plasmas, 5 pt 2 (1901):
  • [8] DIRECT-DRIVE LASER REACHES ICF MILESTONE
    CARTS, YA
    LASER FOCUS-ELECTRO-OPTICS, 1988, 24 (08): : 26 - 26
  • [9] High-gain shock ignition of direct-drive ICF targets for the Laser Megajoule
    Canaud, B.
    Temporal, M.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [10] Hybrid target design for imprint mitigation in direct-drive inertial confinement fusion
    Ceurvorst, L.
    Betti, R.
    Casner, A.
    Gopalaswamy, V
    Bose, A.
    Hu, S. X.
    Campbell, E. M.
    Regan, S. P.
    McCoy, C. A.
    Karasik, M.
    Peebles, J.
    Tabak, M.
    Theobald, W.
    PHYSICAL REVIEW E, 2020, 101 (06)