Simplicial principal component analysis for density functions in Bayes spaces

被引:71
作者
Hron, K. [1 ,2 ]
Menafoglio, A. [3 ]
Templ, M. [4 ,5 ]
Hruzova, K. [1 ,2 ]
Filzmoser, P. [4 ]
机构
[1] Palacky Univ, Fac Sci, Dept Math Anal & Applicat Math, Olomouc 77146, Czech Republic
[2] Palacky Univ, Fac Sci, Dept Geoinformat, Olomouc 77146, Czech Republic
[3] Politecn Milan, MOX Dept Math, I-20133 Milan, Italy
[4] Vienna Univ Technol, Inst Stat & Math Methods Econ, A-1040 Vienna, Austria
[5] Stat Austria, Dept Methodol, A-1110 Vienna, Austria
关键词
Compositional data; Bayes spaces; Centred log-ratio transformation; Functional principal component analysis; AITCHISON GEOMETRY; HILBERT-SPACE; CURVES;
D O I
10.1016/j.csda.2015.07.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Probability density functions are frequently used to characterize the distributional properties of large-scale database systems. As functional compositions, densities primarily carry relative information. As such, standard methods of functional data analysis (FDA) are not appropriate for their statistical processing. The specific features of density functions are accounted for in Bayes spaces, which result from the generalization to the infinite dimensional setting of the Aitchison geometry for compositional data. The aim is to build up a concise methodology for functional principal component analysis of densities. A simplicial functional principal component analysis (SFPCA) is proposed, based on the geometry of the Bayes space B-2 of functional compositions. SFPCA is performed by exploiting the centred log-ratio transform, an isometric isomorphism between B-2 and L-2 which enables one to resort to standard FDA tools. The advantages of the proposed approach with respect to existing techniques are demonstrated using simulated data and a real-world example of population pyramids in Upper Austria. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:330 / 350
页数:21
相关论文
共 30 条
[1]  
[Anonymous], 2001, A practical guide to splines
[2]  
[Anonymous], 1988, Applied Multivariate Statistical Analysis
[3]  
[Anonymous], MONOGRAPHS STAT APPL
[4]   LOCAL INDICATORS OF SPATIAL ASSOCIATION - LISA [J].
ANSELIN, L .
GEOGRAPHICAL ANALYSIS, 1995, 27 (02) :93-115
[5]   Dimensionality reduction when data are density functions [J].
Delicado, P. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) :401-420
[6]  
Delicado P., 2008, TECHNICAL REPORT
[7]   Functional k-sample problem when data are density functions [J].
Delicado, Pedro .
COMPUTATIONAL STATISTICS, 2007, 22 (03) :391-410
[8]   Simplicial geometry for compositional data [J].
Egozcue, J. J. ;
Pawlowsky-Glahn, V. .
COMPOSITIONAL DATA ANALYSIS IN THE GEOSCIENCES: FROM THEORY TO PRACTICE, 2006, 264 :145-+
[9]   Hilbert space of probability density functions based on Aitchison geometry [J].
Egozcue, J. J. ;
Diaz-Barrero, J. L. ;
Pawlowsky-Glahn, V. .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (04) :1175-1182
[10]   Bayes spaces: use of improper distributions and exponential families [J].
Egozcue, J. J. ;
Pawlowsky-Glahn, V. ;
Tolosana-Delgado, R. ;
Ortego, M. I. ;
van den Boogaart, K. G. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2013, 107 (02) :475-486