Investigation of particle and vapor wall-loss effects on controlled wood-smoke smog-chamber experiments

被引:41
作者
Bian, Q. [1 ]
May, A. A. [2 ]
Kreidenweis, S. M. [1 ]
Pierce, J. R. [1 ,3 ]
机构
[1] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
[2] Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA
[3] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada
关键词
SECONDARY ORGANIC AEROSOL; BIOMASS-BURNING AEROSOL; SIZE DISTRIBUTIONS; DIESEL EXHAUST; EMISSIONS; GAS; VOLATILITY; DEPOSITION; EVOLUTION; DILUTION;
D O I
10.5194/acp-15-11027-2015
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA) formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke) may complicate the behavior of particle and vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimations of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set (VBS) and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one-third of the initial particle-phase organic mass (41 %) was lost during the experiments, and over half of this particle-organic mass loss was from direct particle wall loss (65% of the loss) with the remainder from evaporation of the particles driven by vapor losses to the walls (35% of the loss). We perform a series of sensitivity tests to understand uncertainties in our simulations. Uncertainty in the initial wood-smoke volatility distribution contributes 18% uncertainty to the final particle-organic mass remaining in the chamber (relative to base-assumption simulation). We show that the total mass loss may depend on the effective saturation concentration of vapor with respect to the walls as these values currently vary widely in the literature. The details of smoke dilution during the filling of smog chambers may influence the mass loss to the walls, and a dilution of similar to 25 : 1 during the experiments increased particle-organic mass loss by 33% compared to a simulation where we assume the particles and vapors are initially in equilibrium in the chamber. Finally, we discuss how our findings may influence interpretations of emission factors and SOA production in wood-smoke smog-chamber experiments.
引用
收藏
页码:11027 / 11045
页数:19
相关论文
共 53 条
[1]   Predicting global aerosol size distributions in general circulation models [J].
Adams, PJ ;
Seinfeld, JH .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D19) :AAC4-1
[2]   Evolution of trace gases and particles emitted by a chaparral fire in California [J].
Akagi, S. K. ;
Craven, J. S. ;
Taylor, J. W. ;
McMeeking, G. R. ;
Yokelson, R. J. ;
Burling, I. R. ;
Urbanski, S. P. ;
Wold, C. E. ;
Seinfeld, J. H. ;
Coe, H. ;
Alvarado, M. J. ;
Weise, D. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (03) :1397-1421
[3]  
[Anonymous], 1965, HDB MATH FUNCTIONS F
[4]   Bounding the role of black carbon in the climate system: A scientific assessment [J].
Bond, T. C. ;
Doherty, S. J. ;
Fahey, D. W. ;
Forster, P. M. ;
Berntsen, T. ;
DeAngelo, B. J. ;
Flanner, M. G. ;
Ghan, S. ;
Kaercher, B. ;
Koch, D. ;
Kinne, S. ;
Kondo, Y. ;
Quinn, P. K. ;
Sarofim, M. C. ;
Schultz, M. G. ;
Schulz, M. ;
Venkataraman, C. ;
Zhang, H. ;
Zhang, S. ;
Bellouin, N. ;
Guttikunda, S. K. ;
Hopke, P. K. ;
Jacobson, M. Z. ;
Kaiser, J. W. ;
Klimont, Z. ;
Lohmann, U. ;
Schwarz, J. P. ;
Shindell, D. ;
Storelvmo, T. ;
Warren, S. G. ;
Zender, C. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (11) :5380-5552
[5]   Secondary organic aerosol from biogenic VOCs over West Africa during AMMA [J].
Capes, G. ;
Murphy, J. G. ;
Reeves, C. E. ;
McQuaid, J. B. ;
Hamilton, J. F. ;
Hopkins, J. R. ;
Crosier, J. ;
Williams, P. I. ;
Coe, H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (12) :3841-3850
[6]   Observationally constrained estimates of carbonaceous aerosol radiative forcing [J].
Chung, Chul E. ;
Ramanathan, V. ;
Decremer, Damien .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (29) :11624-11629
[7]   TURBULENT DEPOSITION AND GRAVITATIONAL SEDIMENTATION OF AN AEROSOL IN A VESSEL OF ARBITRARY SHAPE [J].
CRUMP, JG ;
SEINFELD, JH .
JOURNAL OF AEROSOL SCIENCE, 1981, 12 (05) :405-415
[8]   Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies [J].
Cubison, M. J. ;
Ortega, A. M. ;
Hayes, P. L. ;
Farmer, D. K. ;
Day, D. ;
Lechner, M. J. ;
Brune, W. H. ;
Apel, E. ;
Diskin, G. S. ;
Fisher, J. A. ;
Fuelberg, H. E. ;
Hecobian, A. ;
Knapp, D. J. ;
Mikoviny, T. ;
Riemer, D. ;
Sachse, G. W. ;
Sessions, W. ;
Weber, R. J. ;
Weinheimer, A. J. ;
Wisthaler, A. ;
Jimenez, J. L. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (23) :12049-12064
[9]   Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO [J].
DeCarlo, P. F. ;
Ulbrich, I. M. ;
Crounse, J. ;
de Foy, B. ;
Dunlea, E. J. ;
Aiken, A. C. ;
Knapp, D. ;
Weinheimer, A. J. ;
Campos, T. ;
Wennberg, P. O. ;
Jimenez, J. L. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (12) :5257-5280
[10]   Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory [J].
DeCarlo, PF ;
Slowik, JG ;
Worsnop, DR ;
Davidovits, P ;
Jimenez, JL .
AEROSOL SCIENCE AND TECHNOLOGY, 2004, 38 (12) :1185-1205