On usual multivariate stochastic ordering of order statistics from heterogeneous beta variables

被引:13
作者
Balakrishnan, Narayanaswamy [1 ,3 ]
Barmalzan, Ghobad [2 ]
Haidari, Abedin [2 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON, Canada
[2] Zabol Univ, Dept Stat, Zabol, Sistan & Baluch, Iran
[3] King Abdulaziz Univ, Dept Stat, Jeddah 21413, Saudi Arabia
关键词
Usual multivariate stochastic order; Order statistics; Proportional reversed hazard rates model; Beta distribution; Exponentiated Weibull distribution; EXPONENTIATED WEIBULL FAMILY;
D O I
10.1016/j.jmva.2014.02.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X-i similar to eta(alpha(i), 1) and Y, similar to eta(gamma(i,) 1), i = 1, 2, be all independent. We show that (alpha(1) alpha(2)) >- (gamma(1) gamma(z)) implies (Y-1:2, Y-2:2) >=(st) (X-1:2, X-2:2). We then extend this result to the general case of the proportional reversed hazard rates (PRHR) model. (C) 2014 Elsevier Inc. All rig similar to hts reserved.
引用
收藏
页码:147 / 150
页数:4
相关论文
共 10 条
[1]  
Balakrishnan N., 1998, HDB STAT
[2]  
Balakrishnan N., 2014, J APPL PROB IN PRESS
[3]   GENERALIZED PROBABILITY DENSITY-FUNCTION FOR DOUBLE-BOUNDED RANDOM-PROCESSES [J].
KUMARASWAMY, P .
JOURNAL OF HYDROLOGY, 1980, 46 (1-2) :79-88
[4]  
Marshall AW, 2011, SPRINGER SER STAT, P3, DOI 10.1007/978-0-387-68276-1
[5]  
Marshall AW, 2007, SPRINGER SER STAT, P1, DOI 10.1007/978-0-387-68477-2
[6]   The exponentiated Weibull family: Some properties and a flood data application [J].
Mudholkar, GS ;
Hutson, AD .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1996, 25 (12) :3059-3083
[7]   EXPONENTIATED WEIBULL FAMILY FOR ANALYZING BATHTUB FAILURE-RATE DATA [J].
MUDHOLKAR, GS ;
SRIVASTAVA, DK .
IEEE TRANSACTIONS ON RELIABILITY, 1993, 42 (02) :299-302
[8]  
Muller A., 2002, Comparison methods for stochastic models and risks
[9]   Ordering properties of systems with two dependent components [J].
Navarro, Jorge ;
Lai, Chin-Diew .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2007, 36 (1-4) :645-655
[10]  
Shaked M, 2007, SPRINGER SER STAT, P3