Preparation and performance of different amino acids functionalized titania-embedded sulfonated poly (ether ether ketone) hybrid membranes for direct methanol fuel cells

被引:41
作者
Wu, Hong [1 ,2 ,3 ]
Cao, Ying [1 ,2 ]
Shen, Xiaohui [1 ,2 ]
Li, Zhen [1 ,2 ]
Xu, Tao [1 ,2 ]
Jiang, Zhongyi [1 ,2 ]
机构
[1] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Sch Chem Engn & Technol, Key Lab Green Chem Technol, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Tianjin Key Lab Membrane Sci & Desalinat Technol, Tianjin 300072, Peoples R China
关键词
Amino acids; Titania submicrospheres; Sulfonated poly (ether ether ketone); Hybrid membranes; Proton conductivity; PROTON-EXCHANGE MEMBRANES; ELECTROLYTE MEMBRANES; COMPOSITE MEMBRANES; NAFION; CONDUCTIVITY; MECHANISM;
D O I
10.1016/j.memsci.2014.03.058
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A series of amino acid functionalized titania submicrospheres were synthesized and incorporated into sulfonated poly (ether ether ketone) (SPEEK) to fabricate organic-inorganic hybrid proton exchange membranes. Pristine TiO2 with a uniform particle size of similar to 200 nm were synthesized and functionalized with four kinds of amino acids including oxidized L-cysteine, O-phospho-L-serine, aspartic acid and histidine, designated as TiO2-Scys, TiO2-Pser, TiO2-Asp and TiO2-His, respectively. The effects of amino acid attribute on the membrane properties were investigated. At the filler content of 15 wt%, the TiO2-Scys embedded membrane exhibited the highest proton conductivity of about 5.98 x 10(-3) S cm(-1) (20 degrees C, 100% RH), while the TiO2-His embedded membrane exhibited the lowest conductivity due to the strong acid-base interaction between the basic imidazole groups of histidine and the sulfuric acid groups of SPEEK. The TiO2-Pser embedded membrane exhibited the highest selectivity of 17.10 x 10(3) S s cm(-1). addition, the methanol crossover of the hybrid membranes was reduced by two folds, and the anti-swelling property and thermal stability of the hybrid membranes were also enhanced. (C) 2014 Elsevier B.V. All rights reserved,
引用
收藏
页码:134 / 144
页数:11
相关论文
共 38 条
[1]   THE GROTTHUSS MECHANISM [J].
AGMON, N .
CHEMICAL PHYSICS LETTERS, 1995, 244 (5-6) :456-462
[2]   Overview of hybrid membranes for direct-methanol fuel-cell applications [J].
Ahmad, H. ;
Kamarudin, S. K. ;
Hasran, U. A. ;
Daud, W. R. W. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (05) :2160-2175
[3]   Acid-functionalized mesostructured aluminosilica for hydrophilic proton conduction membranes [J].
Athens, George L. ;
Ein-Eli, Yair ;
Chmelka, Bradley F. .
ADVANCED MATERIALS, 2007, 19 (18) :2580-+
[4]   A mechanistic principle for proton pumping by cytochrome c oxidase [J].
Faxén, K ;
Gilderson, G ;
Adelroth, P ;
Brzezinski, P .
NATURE, 2005, 437 (7056) :286-289
[5]   Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy [J].
Garczarek, F ;
Gerwert, K .
NATURE, 2006, 439 (7072) :109-112
[6]   Structure of Membranes for Fuel Cells: SANS and SAXS Analyses of Sulfonated PEEK Membranes and Solutions [J].
Gebel, Gerard .
MACROMOLECULES, 2013, 46 (15) :6057-6066
[7]   Proton conductivity of mesoporous sol-gel zirconium phosphates for fuel cell applications [J].
Hogarth, WHJ ;
da Costa, JCD ;
Drennan, J ;
Lu, GQ .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (07) :754-758
[8]   Nanocomposite fuel cell membranes based on Nafion and acid functionalized zeolite beta nanocrystals [J].
Holmberg, Brett A. ;
Wang, Xin ;
Yan, Yushan .
JOURNAL OF MEMBRANE SCIENCE, 2008, 320 (1-2) :86-92
[9]   Polymeric materials for fuel cells: concise review of recent studies [J].
Jagur-Grodzinski, Joseph .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2007, 18 (10) :785-799
[10]   Monodispersed spherical colloids of titania: Synthesis, characterization, and crystallization [J].
Jiang, XC ;
Herricks, T ;
Xia, YN .
ADVANCED MATERIALS, 2003, 15 (14) :1205-+