What drives nematic order in iron-based superconductors?

被引:968
作者
Fernandes, R. M. [1 ]
Chubukov, A. V. [2 ]
Schmalian, J. [3 ,4 ]
机构
[1] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA
[2] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[3] Karlsruher Inst Technol, Inst Theorie Kondensierten Mat, D-76131 Karlsruhe, Germany
[4] Karlsruher Inst Technol, Inst Festkorperphys, D-76131 Karlsruhe, Germany
关键词
INPLANE RESISTIVITY ANISOTROPY; TRANSITION; STATE;
D O I
10.1038/nphys2877
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Although the existence of nematic order in iron-based superconductors is now a well-established experimental fact, its origin remains controversial. Nematic order breaks the discrete lattice rotational symmetry by making the x and y directions in the iron plane non-equivalent. This can happen because of a regular structural transition or as the result of an electronically driven instability in particular, orbital order or spin-driven Ising-nematic order. The latter is a magnetic state that breaks rotational symmetry but preserves time-reversal symmetry. Symmetry dictates that the development of one of these orders immediately induces the other two, making the origin of nematicity a physics realization of the 'chicken and egg problem'. In this Review, we argue that the evidence strongly points to an electronic mechanism of nematicity, placing nematic order in the class of correlation-driven electronic instabilities, like superconductivity and density-wave transitions. We discuss different microscopic models for nematicity and link them to the properties of the magnetic and superconducting states, providing a unified perspective on the phase diagram of the iron pnictides.
引用
收藏
页码:97 / 104
页数:8
相关论文
共 73 条
[1]   Phase transitions in spin-orbital models with spin-space anisotropies for iron pnictides: Monte Carlo simulations [J].
Applegate, Ryan ;
Singh, Rajiv R. P. ;
Chen, Cheng-Chien ;
Devereaux, Thomas P. .
PHYSICAL REVIEW B, 2012, 85 (05)
[2]   Detection of orbital fluctuations above the structural transition temperature in the iron pnictides and chalcogenides [J].
Arham, H. Z. ;
Hunt, C. R. ;
Park, W. K. ;
Gillett, J. ;
Das, S. D. ;
Sebastian, S. E. ;
Xu, Z. J. ;
Wen, J. S. ;
Lin, Z. W. ;
Li, Q. ;
Gu, G. ;
Thaler, A. ;
Ran, S. ;
Bud'ko, S. L. ;
Canfield, P. C. ;
Chung, D. Y. ;
Kanatzidis, M. G. ;
Greene, L. H. .
PHYSICAL REVIEW B, 2012, 85 (21)
[3]   Phase diagram of Ba1-xKxFe2As2 [J].
Avci, S. ;
Chmaissem, O. ;
Chung, D. Y. ;
Rosenkranz, S. ;
Goremychkin, E. A. ;
Castellan, J. P. ;
Todorov, I. S. ;
Schlueter, J. A. ;
Claus, H. ;
Daoud-Aladine, A. ;
Khalyavin, D. D. ;
Kanatzidis, M. G. ;
Osborn, R. .
PHYSICAL REVIEW B, 2012, 85 (18)
[4]  
Avci S., 2013, PREPRINT
[5]   Sign-reversal of the in-plane resistivity anisotropy in hole-doped iron pnictides [J].
Blomberg, E. C. ;
Tanatar, M. A. ;
Fernandes, R. M. ;
Mazin, I. I. ;
Shen, Bing ;
Wen, Hai-Hu ;
Johannes, M. D. ;
Schmalian, J. ;
Prozorov, R. .
NATURE COMMUNICATIONS, 2013, 4
[6]  
Bohmer A. E., 2013, PREPRINT
[7]   Microscopically derived Ginzburg-Landau theory for magnetic order in the iron pnictides [J].
Brydon, P. M. R. ;
Schmiedt, Jacob ;
Timm, Carsten .
PHYSICAL REVIEW B, 2011, 84 (21)
[8]   Interplay of magnetic and structural transitions in iron-based pnictide superconductors [J].
Cano, A. ;
Civelli, M. ;
Eremin, I. ;
Paul, I. .
PHYSICAL REVIEW B, 2010, 82 (02)
[9]   ISING TRANSITION IN FRUSTRATED HEISENBERG MODELS [J].
CHANDRA, P ;
COLEMAN, P ;
LARKIN, AI .
PHYSICAL REVIEW LETTERS, 1990, 64 (01) :88-91
[10]   Orbital order and spontaneous orthorhombicity in iron pnictides [J].
Chen, C. -C. ;
Maciejko, J. ;
Sorini, A. P. ;
Moritz, B. ;
Singh, R. R. P. ;
Devereaux, T. P. .
PHYSICAL REVIEW B, 2010, 82 (10)