Artifact Removal using Improved GoogLeNet for Sparse-view CT Reconstruction

被引:116
作者
Xie, Shipeng [1 ]
Zheng, Xinyu [1 ]
Chen, Yang [2 ,3 ]
Xie, Lizhe [5 ]
Liu, Jin [2 ,3 ]
Zhang, Yudong [4 ]
Yan, Jingjie [1 ]
Zhu, Hu [1 ]
Hu, Yining [2 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Jiangsu, Peoples R China
[2] Southeast Univ, Minist Educ, LIST, Key Lab Comp Network & Informat Integrat, Nanjing 210096, Jiangsu, Peoples R China
[3] Southeast Univ, Minist Educ, Int Joint Res Lab Informat Display & Visualizat, Nanjing 210096, Jiangsu, Peoples R China
[4] Univ Leicester, Dept Informat, Leicester LE1 7RH, Leics, England
[5] Nanjing Med Univ, Jiangsu Key Lab Oral Dis, Nanjing 210029, Jiangsu, Peoples R China
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
中国国家自然科学基金;
关键词
IMAGE-RECONSTRUCTION; COMPUTED-TOMOGRAPHY;
D O I
10.1038/s41598-018-25153-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sparse-view Reconstruction can be used to provide accelerated low dose CT imaging with both accelerated scan and reduced projection/back-projection calculation. Despite the rapid developments, image noise and artifacts still remain a major issue in the low dose protocol. In this paper, a deep learning based method named Improved GoogLeNet is proposed to remove streak artifacts due to projection missing in sparse-view CT reconstruction. Residual learning is used in GoogLeNet to study the artifacts of sparse-view CT reconstruction, and then subtracts the artifacts obtained by learning from the sparse reconstructed images, finally recovers a clear correction image. The intensity of reconstruction using the proposed method is very close to the full-view projective reconstructed image. The results indicate that the proposed method is practical and effective for reducing the artifacts and preserving the quality of the reconstructed image.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Sparse-view X-ray CT reconstruction with Gamma regularization [J].
Zhang, Junfeng ;
Hu, Yining ;
Yang, Jian ;
Chen, Yang ;
Coatrieux, Jean-Louis ;
Luo, Limin .
NEUROCOMPUTING, 2017, 230 :251-269
[32]   TV-Stokes strategy for sparse-view CT image reconstruction [J].
Liu, Yan ;
Chen, Lin ;
Zhang, Hao ;
Wang, Ke ;
Ma, Jianhua ;
Liang, Zhengrong .
MEDICAL IMAGING 2013: PHYSICS OF MEDICAL IMAGING, 2013, 8668
[33]   Deep Embedding-Attention-Refinement for Sparse-View CT Reconstruction [J].
Wu, Weiwen ;
Guo, Xiaodong ;
Chen, Yang ;
Wang, Shaoyu ;
Chen, Jun .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
[34]   LIR-Net:Learnable Iterative Reconstruction Network for Fan Beam CT Sparse-View Reconstruction [J].
Cheng, Yubin ;
Li, Qing ;
Li, Runrui ;
Wang, Tao ;
Zhao, Juanjuan ;
Yan, Qiang ;
Rehman, Zia Ur ;
Wang, Long ;
Geng, Yan .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2024, 10 :181-195
[35]   Hierarchical decomposed dual-domain deep learning for sparse-view CT reconstruction [J].
Han, Yoseob .
PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (08)
[36]   Sparse-View Spectral CT Reconstruction Using Spectral Patch-Based Low-Rank Penalty [J].
Kim, Kyungsang ;
Ye, Jong Chul ;
Worstell, William ;
Ouyang, Jinsong ;
Rakvongthai, Yothin ;
El Fakhri, Georges ;
Li, Quanzheng .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (03) :748-760
[37]   Sparse-View Artifact Correction of High-Pixel-Number Synchrotron Radiation CT [J].
Huang, Mei ;
Li, Gang ;
Sun, Rui ;
Zhang, Jie ;
Wang, Zhimao ;
Wang, Yanping ;
Deng, Tijian ;
Yu, Bei .
APPLIED SCIENCES-BASEL, 2024, 14 (08)
[38]   Sparse-view CT perfusion with filtered back projection image reconstruction [J].
Chung, Kevin J. ;
Menon, Bijoy K. ;
Lee, Ting-Yim .
MEDICAL IMAGING 2020: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11317
[39]   ADMM-SVNet: An ADMM-Based Sparse-View CT Reconstruction Network [J].
Wang, Sukai ;
Li, Xuan ;
Chen, Ping .
PHOTONICS, 2022, 9 (03)
[40]   Sparse-view neutron CT reconstruction of irradiated fuel assembly using total variation minimization with Poisson statistics [J].
Abir, Muhammad ;
Islam, Fahima ;
Wachs, Daniel ;
Lee, Hyoung-Koo .
JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2016, 307 (03) :1967-1979