Artifact Removal using Improved GoogLeNet for Sparse-view CT Reconstruction

被引:122
作者
Xie, Shipeng [1 ]
Zheng, Xinyu [1 ]
Chen, Yang [2 ,3 ]
Xie, Lizhe [5 ]
Liu, Jin [2 ,3 ]
Zhang, Yudong [4 ]
Yan, Jingjie [1 ]
Zhu, Hu [1 ]
Hu, Yining [2 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Jiangsu, Peoples R China
[2] Southeast Univ, Minist Educ, LIST, Key Lab Comp Network & Informat Integrat, Nanjing 210096, Jiangsu, Peoples R China
[3] Southeast Univ, Minist Educ, Int Joint Res Lab Informat Display & Visualizat, Nanjing 210096, Jiangsu, Peoples R China
[4] Univ Leicester, Dept Informat, Leicester LE1 7RH, Leics, England
[5] Nanjing Med Univ, Jiangsu Key Lab Oral Dis, Nanjing 210029, Jiangsu, Peoples R China
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
中国国家自然科学基金;
关键词
IMAGE-RECONSTRUCTION; COMPUTED-TOMOGRAPHY;
D O I
10.1038/s41598-018-25153-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sparse-view Reconstruction can be used to provide accelerated low dose CT imaging with both accelerated scan and reduced projection/back-projection calculation. Despite the rapid developments, image noise and artifacts still remain a major issue in the low dose protocol. In this paper, a deep learning based method named Improved GoogLeNet is proposed to remove streak artifacts due to projection missing in sparse-view CT reconstruction. Residual learning is used in GoogLeNet to study the artifacts of sparse-view CT reconstruction, and then subtracts the artifacts obtained by learning from the sparse reconstructed images, finally recovers a clear correction image. The intensity of reconstruction using the proposed method is very close to the full-view projective reconstructed image. The results indicate that the proposed method is practical and effective for reducing the artifacts and preserving the quality of the reconstructed image.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Performance of sparse-view CT reconstruction with multi-directional gradient operators [J].
Hsieh, Chia-Jui ;
Jin, Shih-Chun ;
Chen, Jyh-Cheng ;
Kuo, Chih-Wei ;
Wang, Ruei-Teng ;
Chu, Woei-Chyn .
PLOS ONE, 2019, 14 (01)
[22]   Synchrotron radiation sparse-view CT artifact correction through deep learning neural networks [J].
Huang, Mei ;
Li, Gang ;
Zhang, Jie ;
Deng, Tijian ;
Yu, Bei ;
Wang, Yanping ;
Sun, Rui ;
Wang, Zhimao ;
Wang, Lu ;
Wang, Hao .
NONDESTRUCTIVE TESTING AND EVALUATION, 2025, 40 (03) :886-903
[23]   REDAEP: Robust and Enhanced Denoising Autoencoding Prior for Sparse-View CT Reconstruction [J].
Zhang, Fengqin ;
Zhang, Minghui ;
Qin, Binjie ;
Zhang, Yi ;
Xu, Zichen ;
Liang, Dong ;
Liu, Qiegen .
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2021, 5 (01) :108-119
[24]   Degradation-Aware Deep Learning Framework for Sparse-View CT Reconstruction [J].
Sun, Chang ;
Liu, Yitong ;
Yang, Hongwen .
TOMOGRAPHY, 2021, 7 (04) :932-949
[25]   Learning Task-Specific Sampling Strategy for Sparse-View CT Reconstruction [J].
Yang, Liutao ;
Huang, Jiahao ;
Fang, Yingying ;
Aviles-Rivero, Angelica, I ;
Schonlieb, Carola-Bibiane ;
Zhang, Daoqiang ;
Yang, Guang .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
[26]   Hybrid-Domain Neural Network Processing for Sparse-View CT Reconstruction [J].
Hu, Dianlin ;
Liu, Jin ;
Lv, Tianling ;
Zhao, Qianlong ;
Zhang, Yikun ;
Quan, Guotao ;
Feng, Juan ;
Chen, Yang ;
Luo, Limin .
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2021, 5 (01) :88-98
[27]   Combining convolutional sparse coding with total variation for sparse-view CT reconstruction [J].
Li, Xuru ;
Li, Yu ;
Chen, Ping ;
Li, Fuzhong .
APPLIED OPTICS, 2022, 61 (06) :C116-C124
[28]   Sparse-view cone beam CT reconstruction using dual CNNs in projection domain and image domain [J].
Chao, Lianying ;
Wang, Zhiwei ;
Zhang, Haobo ;
Xu, Wenting ;
Zhang, Peng ;
Li, Qiang .
NEUROCOMPUTING, 2022, 493 :536-547
[29]   Deep Guess acceleration for explainable image reconstruction in sparse-view CT [J].
Piccolomini, Elena Loli ;
Evangelista, Davide ;
Morotti, Elena .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2025, 123
[30]   CAIR: Combining integrated attention with iterative optimization learning for sparse-view CT reconstruction [J].
Cheng, Weiting ;
He, Jichun ;
Liu, Yi ;
Zhang, Haowen ;
Wang, Xiang ;
Liu, Yuhang ;
Zhang, Pengcheng ;
Chen, Hao ;
Gui, Zhiguo .
COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 163