Artifact Removal using Improved GoogLeNet for Sparse-view CT Reconstruction

被引:116
作者
Xie, Shipeng [1 ]
Zheng, Xinyu [1 ]
Chen, Yang [2 ,3 ]
Xie, Lizhe [5 ]
Liu, Jin [2 ,3 ]
Zhang, Yudong [4 ]
Yan, Jingjie [1 ]
Zhu, Hu [1 ]
Hu, Yining [2 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Jiangsu, Peoples R China
[2] Southeast Univ, Minist Educ, LIST, Key Lab Comp Network & Informat Integrat, Nanjing 210096, Jiangsu, Peoples R China
[3] Southeast Univ, Minist Educ, Int Joint Res Lab Informat Display & Visualizat, Nanjing 210096, Jiangsu, Peoples R China
[4] Univ Leicester, Dept Informat, Leicester LE1 7RH, Leics, England
[5] Nanjing Med Univ, Jiangsu Key Lab Oral Dis, Nanjing 210029, Jiangsu, Peoples R China
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
中国国家自然科学基金;
关键词
IMAGE-RECONSTRUCTION; COMPUTED-TOMOGRAPHY;
D O I
10.1038/s41598-018-25153-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sparse-view Reconstruction can be used to provide accelerated low dose CT imaging with both accelerated scan and reduced projection/back-projection calculation. Despite the rapid developments, image noise and artifacts still remain a major issue in the low dose protocol. In this paper, a deep learning based method named Improved GoogLeNet is proposed to remove streak artifacts due to projection missing in sparse-view CT reconstruction. Residual learning is used in GoogLeNet to study the artifacts of sparse-view CT reconstruction, and then subtracts the artifacts obtained by learning from the sparse reconstructed images, finally recovers a clear correction image. The intensity of reconstruction using the proposed method is very close to the full-view projective reconstructed image. The results indicate that the proposed method is practical and effective for reducing the artifacts and preserving the quality of the reconstructed image.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Degradation-Aware Deep Learning Framework for Sparse-View CT Reconstruction
    Sun, Chang
    Liu, Yitong
    Yang, Hongwen
    TOMOGRAPHY, 2021, 7 (04) : 932 - 949
  • [22] Dual-Domain Reconstruction Network for Sparse-View CT
    Zhang, Yi
    Chen, Hu
    Xia, Wenjun
    Chen, Yang
    Liu, Baodong
    Liu, Yan
    Sun, Huaiqiang
    Zhou, Jiliu
    DEVELOPMENTS IN X-RAY TOMOGRAPHY XIII, 2021, 11840
  • [23] Generalized deep iterative reconstruction for sparse-view CT imaging
    Su, Ting
    Cui, Zhuoxu
    Yang, Jiecheng
    Zhang, Yunxin
    Liu, Jian
    Zhu, Jiongtao
    Gao, Xiang
    Fang, Shibo
    Zheng, Hairong
    Ge, Yongshuai
    Liang, Dong
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (02)
  • [24] Combining convolutional sparse coding with total variation for sparse-view CT reconstruction
    Li, Xuru
    Li, Yu
    Chen, Ping
    Li, Fuzhong
    APPLIED OPTICS, 2022, 61 (06) : C116 - C124
  • [25] Sparse-view cone beam CT reconstruction using dual CNNs in projection domain and image domain
    Chao, Lianying
    Wang, Zhiwei
    Zhang, Haobo
    Xu, Wenting
    Zhang, Peng
    Li, Qiang
    NEUROCOMPUTING, 2022, 493 : 536 - 547
  • [26] Sparse-View CT Reconstruction via Robust and Multi-channels Autoencoding Priors
    Zhang, Minghui
    Zhang, Fengqin
    Liu, Qiegen
    Liang, Dong
    ISICDM 2018: PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON IMAGE COMPUTING AND DIGITAL MEDICINE, 2018, : 55 - 59
  • [27] Sparse-View Spectral CT Reconstruction Based on Tensor Decomposition and Total Generalized Variation
    Li, Xuru
    Wang, Kun
    Xue, Xiaoqin
    Li, Fuzhong
    ELECTRONICS, 2024, 13 (10)
  • [28] Deep Guess acceleration for explainable image reconstruction in sparse-view CT
    Piccolomini, Elena Loli
    Evangelista, Davide
    Morotti, Elena
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2025, 123
  • [29] CAIR: Combining integrated attention with iterative optimization learning for sparse-view CT reconstruction
    Cheng, Weiting
    He, Jichun
    Liu, Yi
    Zhang, Haowen
    Wang, Xiang
    Liu, Yuhang
    Zhang, Pengcheng
    Chen, Hao
    Gui, Zhiguo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 163
  • [30] TV-Stokes strategy for sparse-view CT image reconstruction
    Liu, Yan
    Chen, Lin
    Zhang, Hao
    Wang, Ke
    Ma, Jianhua
    Liang, Zhengrong
    MEDICAL IMAGING 2013: PHYSICS OF MEDICAL IMAGING, 2013, 8668