Artifact Removal using Improved GoogLeNet for Sparse-view CT Reconstruction

被引:116
|
作者
Xie, Shipeng [1 ]
Zheng, Xinyu [1 ]
Chen, Yang [2 ,3 ]
Xie, Lizhe [5 ]
Liu, Jin [2 ,3 ]
Zhang, Yudong [4 ]
Yan, Jingjie [1 ]
Zhu, Hu [1 ]
Hu, Yining [2 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Jiangsu, Peoples R China
[2] Southeast Univ, Minist Educ, LIST, Key Lab Comp Network & Informat Integrat, Nanjing 210096, Jiangsu, Peoples R China
[3] Southeast Univ, Minist Educ, Int Joint Res Lab Informat Display & Visualizat, Nanjing 210096, Jiangsu, Peoples R China
[4] Univ Leicester, Dept Informat, Leicester LE1 7RH, Leics, England
[5] Nanjing Med Univ, Jiangsu Key Lab Oral Dis, Nanjing 210029, Jiangsu, Peoples R China
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
中国国家自然科学基金;
关键词
IMAGE-RECONSTRUCTION; COMPUTED-TOMOGRAPHY;
D O I
10.1038/s41598-018-25153-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sparse-view Reconstruction can be used to provide accelerated low dose CT imaging with both accelerated scan and reduced projection/back-projection calculation. Despite the rapid developments, image noise and artifacts still remain a major issue in the low dose protocol. In this paper, a deep learning based method named Improved GoogLeNet is proposed to remove streak artifacts due to projection missing in sparse-view CT reconstruction. Residual learning is used in GoogLeNet to study the artifacts of sparse-view CT reconstruction, and then subtracts the artifacts obtained by learning from the sparse reconstructed images, finally recovers a clear correction image. The intensity of reconstruction using the proposed method is very close to the full-view projective reconstructed image. The results indicate that the proposed method is practical and effective for reducing the artifacts and preserving the quality of the reconstructed image.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Artifact Removal using Improved GoogLeNet for Sparse-view CT Reconstruction
    Shipeng Xie
    Xinyu Zheng
    Yang Chen
    Lizhe Xie
    Jin Liu
    Yudong Zhang
    Jingjie Yan
    Hu Zhu
    Yining Hu
    Scientific Reports, 8
  • [2] Sparse-view CT reconstruction with improved GoogLeNet
    Xie, Shipeng
    Zhang, Pengcheng
    Luo, Limin
    Li, Haibo
    MEDICAL IMAGING 2018: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2018, 10578
  • [3] Sparse-View CT Reconstruction Using Wasserstein GANs
    Thaler, Franz
    Hammernik, Kerstin
    Payer, Christian
    Urschler, Martin
    Stern, Darko
    MACHINE LEARNING FOR MEDICAL IMAGE RECONSTRUCTION, MLMIR 2018, 2018, 11074 : 75 - 82
  • [4] Artifact Removal Using Attention Guided Local-Global Dual-Stream Network for Sparse-View CT Reconstruction
    Sun, Chang
    Liu, Yitong
    Yang, Hongwen
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (08) : 1105 - 1109
  • [5] Bone-induced streak artifact suppression in sparse-view CT image reconstruction
    Jin, Seung Oh
    Kim, Jae Gon
    Lee, Soo Yeol
    Kwon, Oh-Kyong
    BIOMEDICAL ENGINEERING ONLINE, 2012, 11
  • [6] Bone-induced streak artifact suppression in sparse-view CT image reconstruction
    Seung Oh Jin
    Jae Gon Kim
    Soo Yeol Lee
    Oh-Kyong Kwon
    BioMedical Engineering OnLine, 11
  • [7] Artifact Reduction for Sparse-View CT Using Deep Learning With Band Patch
    Okamoto, Takayuki
    Ohnishi, Takashi
    Haneishi, Hideaki
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2022, 6 (08) : 859 - 873
  • [8] SPARSE-VIEW CT RECONSTRUCTION VIA CONVOLUTIONAL SPARSE CODING
    Bao, Peng
    Xia, Wenjun
    Yang, Kang
    Zhou, Jiliu
    Zhang, Yi
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1446 - 1449
  • [9] COMPARISON OF SPARSE-VIEW CT IMAGE RECONSTRUCTION ALGORITHMS
    Zhang, Shu
    Xia, Youshen
    Zou, Changzhong
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), 2016, : 385 - 390
  • [10] DEEP BACK PROJECTION FOR SPARSE-VIEW CT RECONSTRUCTION
    Ye, Dong Hye
    Buzzard, Gregery T.
    Ruby, Max
    Bouman, Charles A.
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 1 - 5