Artifact Removal using Improved GoogLeNet for Sparse-view CT Reconstruction

被引:122
作者
Xie, Shipeng [1 ]
Zheng, Xinyu [1 ]
Chen, Yang [2 ,3 ]
Xie, Lizhe [5 ]
Liu, Jin [2 ,3 ]
Zhang, Yudong [4 ]
Yan, Jingjie [1 ]
Zhu, Hu [1 ]
Hu, Yining [2 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Jiangsu, Peoples R China
[2] Southeast Univ, Minist Educ, LIST, Key Lab Comp Network & Informat Integrat, Nanjing 210096, Jiangsu, Peoples R China
[3] Southeast Univ, Minist Educ, Int Joint Res Lab Informat Display & Visualizat, Nanjing 210096, Jiangsu, Peoples R China
[4] Univ Leicester, Dept Informat, Leicester LE1 7RH, Leics, England
[5] Nanjing Med Univ, Jiangsu Key Lab Oral Dis, Nanjing 210029, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
IMAGE-RECONSTRUCTION; COMPUTED-TOMOGRAPHY;
D O I
10.1038/s41598-018-25153-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sparse-view Reconstruction can be used to provide accelerated low dose CT imaging with both accelerated scan and reduced projection/back-projection calculation. Despite the rapid developments, image noise and artifacts still remain a major issue in the low dose protocol. In this paper, a deep learning based method named Improved GoogLeNet is proposed to remove streak artifacts due to projection missing in sparse-view CT reconstruction. Residual learning is used in GoogLeNet to study the artifacts of sparse-view CT reconstruction, and then subtracts the artifacts obtained by learning from the sparse reconstructed images, finally recovers a clear correction image. The intensity of reconstruction using the proposed method is very close to the full-view projective reconstructed image. The results indicate that the proposed method is practical and effective for reducing the artifacts and preserving the quality of the reconstructed image.
引用
收藏
页数:9
相关论文
共 25 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]  
Burger H. C, 2012, COMPUTER SCI
[3]  
Burger H. C., 2012, 2012 IEEE conference on computer vision and pattern recognition
[4]   Prior image constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic CT images from highly undersampled projection data sets [J].
Chen, Guang-Hong ;
Tang, Jie ;
Leng, Shuai .
MEDICAL PHYSICS, 2008, 35 (02) :660-663
[5]  
Chen Y. C., 2016, IEEE T CIRCUITS SYST, V99, P1, DOI [10.1109/LGRS.2016.2517095, DOI 10.1109/LGRS.2016.2517095]
[6]   Artifact Suppressed Dictionary Learning for Low-Dose CT Image Processing [J].
Chen, Yang ;
Shi, Luyao ;
Feng, Qianjing ;
Yang, Jian ;
Shu, Huazhong ;
Luo, Limin ;
Coatrieux, Jean-Louis ;
Chen, Wufan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (12) :2271-2292
[7]   Thoracic low-dose CT image processing using an artifact suppressed large-scale nonlocal means [J].
Chen, Yang ;
Yang, Zhou ;
Hu, Yining ;
Yang, Guanyu ;
Zhu, Yongcheng ;
Li, Yinsheng ;
Luo, Limin ;
Chen, Wufan ;
Toumoulin, Christine .
PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (09) :2667-2688
[8]  
Cheng L., 2017, INT C FULL 3 DIM IM
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   Deep Convolutional Neural Network for Inverse Problems in Imaging [J].
Jin, Kyong Hwan ;
McCann, Michael T. ;
Froustey, Emmanuel ;
Unser, Michael .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (09) :4509-4522