Three dimensional structures predicted by the modified phase field crystal equation

被引:36
作者
Bueno, Jesus [1 ]
Starodumov, Ilya [2 ]
Gomez, Hector [1 ]
Galenko, Peter [3 ]
Alexandrov, Dmitri [2 ]
机构
[1] Univ A Coruna, Dept Metodos Matemat & Representac, La Coruna 15192, Spain
[2] Ural Fed Univ, Dept Math Phys, Lab Multiscale Math Modeling, Ekaterinburg 620000, Russia
[3] Univ Jena, Fak Phys Astron, D-07743 Jena, Germany
基金
俄罗斯基础研究基金会; 欧洲研究理事会;
关键词
Phase field; Crystal; Isogeometric analysis; Parallel computing;
D O I
10.1016/j.commatsci.2015.09.038
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present the first numerical results on three dimensional structures predicted by the modified phase field crystal equation. The computations are performed using parallel algorithms based on isogeometric analysis, a generalization of the finite element method. The evolution of crystal structures to their steady equilibrium state is predicted for various atomic densities and temperatures. These steady structures are consistent with the phase diagram predicted earlier using one-mode approximations of analytical solutions to the classical parabolic phase-field crystal equation. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:310 / 312
页数:3
相关论文
共 22 条
  • [1] Balay S., 2014, PETSc Users Manual Revision 3.5 No. ANL-95/11 Rev. 3.5
  • [2] Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation
    Baskaran, Arvind
    Hu, Zhengzheng
    Lowengrub, John S.
    Wang, Cheng
    Wise, Steven M.
    Zhou, Peng
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 250 : 270 - 292
  • [3] A TIME INTEGRATION ALGORITHM FOR STRUCTURAL DYNAMICS WITH IMPROVED NUMERICAL DISSIPATION - THE GENERALIZED-ALPHA METHOD
    CHUNG, J
    HULBERT, GM
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1993, 60 (02): : 371 - 375
  • [4] Cottrell J.A., 2009, Isogeometric Analysis: Towards Unification of Computer Aided Design and Finite Element Analysis
  • [5] Phase-field crystal modeling and classical density functional theory of freezing
    Elder, K. R.
    Provatas, Nikolas
    Berry, Joel
    Stefanovic, Peter
    Grant, Martin
    [J]. PHYSICAL REVIEW B, 2007, 75 (06)
  • [6] Elder KR, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.051605
  • [7] Unconditionally stable method and numerical solution of the hyperbolic phase-field crystal equation
    Galenko, P. K.
    Gomez, H.
    Kropotin, N. V.
    Elder, K. R.
    [J]. PHYSICAL REVIEW E, 2013, 88 (01):
  • [8] Marginal stability analysis of the phase field crystal model in one spatial dimension
    Galenko, P. K.
    Elder, K. R.
    [J]. PHYSICAL REVIEW B, 2011, 83 (06)
  • [9] Phase-field-crystal and Swift-Hohenberg equations with fast dynamics
    Galenko, Peter
    Danilov, Denis
    Lebedev, Vladimir
    [J]. PHYSICAL REVIEW E, 2009, 79 (05):
  • [10] Diffusionless crystal growth in rapidly solidifying eutectic systems
    Galenko, PK
    Herlach, DM
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (15)