Thermodynamic Equilibrium between Excitons and Excitonic Molecules Dictates Optical Gain in Colloidal CdSe Quantum Wells

被引:45
作者
Geiregat, Pieter [1 ,2 ]
Tomar, Renu [1 ,2 ]
Chen, Kai [3 ,4 ,5 ]
Singh, Shalini [1 ,2 ]
Hodgkiss, Justin M. [3 ,4 ,5 ]
Hens, Zeger [1 ,2 ]
机构
[1] Univ Ghent, Phys & Chem Nanostruct, B-9000 Ghent, Belgium
[2] Ctr Nano & Biophoton, B-9000 Ghent, Belgium
[3] MacDiarmid Inst Adv Mat & Nanotechnol, Wellington 6012, New Zealand
[4] Victoria Univ Wellington, Sch Chem & Phys Sci, Wellington 6012, New Zealand
[5] Dodd Walls Ctr Photon & Quantum Technol, Dunedin 9054, New Zealand
基金
欧盟地平线“2020”;
关键词
STIMULATED-EMISSION; ELECTRONIC-STRUCTURE; BINDING-ENERGY; BIEXCITONS; NANOPLATELETS; SPECTROSCOPY; ABSORPTION; METAL;
D O I
10.1021/acs.jpclett.9b01607
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We show that optical gain in 2D CdSe colloidal quantum wells (CQWs) shows little saturation and coexists with exciton absorption over a broad range of excitation densities, in stark contrast with OD CdSe colloidal quantum dots (CQDs). In addition, we demonstrate that photoexcited CQWs can absorb or emit light through the thermodynamically driven formation or radiative recombination of singlet excitonic molecules. Invoking stimulated emission through the molecule exciton transition, we can quantify all of the remarkable gain characteristics of CQWs using only experimentally determined parameters, an advance that highlights a fundamental difference between multiexcitons in CQWs and CQDs. While strong confinement prohibits the dissociation of multiexcitons into separate excitons in OD CQDs, excitons and excitonic molecules coexist in a 2D CQW at room temperature, with densities governed by an association/ dissociation equilibrium, not by state-filling. Our finding points out future directions to optimize stimulated emission by excitonic 2D materials in general.
引用
收藏
页码:3637 / 3644
页数:15
相关论文
共 51 条
[11]   Semiconductor Nanoplatelet Excimers [J].
Diroll, Benjamin T. ;
Cho, Wooje ;
Coropceanu, Igor ;
Harvey, Samantha M. ;
Brumberg, Alexandra ;
Holtgrewe, Nicholas ;
Crooker, Scott A. ;
Wasielewski, Michael R. ;
Prakapenka, Vitali B. ;
Talapin, Dmitri V. ;
Schaller, Richard D. .
NANO LETTERS, 2018, 18 (11) :6948-6953
[12]   Using Bulk-like Nanocrystals To Probe Intrinsic Optical Gain Characteristics of Inorganic Lead Halide Perovskites [J].
Geiregat, Pieter ;
Maes, Jorick ;
Chen, Kai ;
Drijvers, Emile ;
De Roo, Jonathan ;
Hodgkiss, Justin M. ;
Hens, Zeger .
ACS NANO, 2018, 12 (10) :10178-10188
[13]   THERMODYNAMICS OF EXCITONIC MOLECULES IN SILICON [J].
GOURLEY, PL ;
WOLFE, JP .
PHYSICAL REVIEW B, 1979, 20 (08) :3319-3327
[14]  
Grim JQ, 2014, NAT NANOTECHNOL, V9, P891, DOI [10.1038/NNANO.2014.213, 10.1038/nnano.2014.213]
[15]   Giant Modal Gain Coefficients in Colloidal II-VI Nanoplatelets [J].
Guzelturk, Burak ;
Pelton, Matthew ;
Olutas, Murat ;
Demir, Hilmi Volkan .
NANO LETTERS, 2019, 19 (01) :277-282
[16]  
Ithurria S, 2011, NAT MATER, V10, P936, DOI [10.1038/NMAT3145, 10.1038/nmat3145]
[17]   Bose-Einstein condensation of exciton polaritons [J].
Kasprzak, J. ;
Richard, M. ;
Kundermann, S. ;
Baas, A. ;
Jeambrun, P. ;
Keeling, J. M. J. ;
Marchetti, F. M. ;
Szymanska, M. H. ;
Andre, R. ;
Staehli, J. L. ;
Savona, V. ;
Littlewood, P. B. ;
Deveaud, B. ;
Dang, Le Si .
NATURE, 2006, 443 (7110) :409-414
[18]   THERMODYNAMICS OF BIEXCITONS IN A GAAS QUANTUM-WELL [J].
KIM, JC ;
WAKE, DR ;
WOLFE, JP .
PHYSICAL REVIEW B, 1994, 50 (20) :15099-15107
[19]   BINDING-ENERGY OF BIEXCITONS AND BOUND EXCITONS IN QUANTUM WELLS [J].
KLEINMAN, DA .
PHYSICAL REVIEW B, 1983, 28 (02) :871-879
[20]   Excitonic molecules and stimulated emission in a ZnSe single quantum well [J].
Kozlov, V ;
Kelkar, P ;
Nurmikko, AV ;
Chu, CC ;
Grillo, DC ;
Han, J ;
Hua, CG ;
Gunshor, RL .
PHYSICAL REVIEW B, 1996, 53 (16) :10837-10840