Nonlinear stability of one-layer geostrophic fronts

被引:1
作者
Duan, JQ [1 ]
Wiggins, S [1 ]
机构
[1] CALTECH, PASADENA, CA 91125 USA
关键词
stability; frontal dynamics; Hamiltonian dynamics; geostrophic fronts; beta-effect;
D O I
10.1016/0167-2789(96)00115-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the nonlinear stability of one-layer geostrophic fronts described by frontal geostrophic equations, We show that the beta-effect plays a crucial role in the stability of one-layer geostrophic fronts. Especially, we prove that the class of nonlinearly stable fronts is more restricted when the beta-effect is present than when it is absent.
引用
收藏
页码:335 / 342
页数:8
相关论文
共 50 条
  • [41] The stability of curved fronts in a periodic shear flow
    Huang, Rui
    Tan, Xiaoyun
    Yin, Jingxue
    APPLIED MATHEMATICS LETTERS, 2019, 88 : 33 - 40
  • [42] Flat fronts and stability for the porous medium equation
    Kienzler, Clemens
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2016, 41 (12) : 1793 - 1838
  • [43] Influence of the geostrophic wind direction on the atmospheric boundary layer flow
    Howland, M. F.
    Ghate, A. S.
    Lele, S. K.
    JOURNAL OF FLUID MECHANICS, 2020, 883
  • [44] On Stability of Thomson's Vortex N-gon in the Geostrophic Model of the Point Bessel Vortices
    Kurakin, Leonid G.
    Ostrovskaya, Irina V.
    REGULAR & CHAOTIC DYNAMICS, 2017, 22 (07) : 865 - 879
  • [45] On Stability of Thomson’s Vortex N-gon in the Geostrophic Model of the Point Bessel Vortices
    Leonid G. Kurakin
    Irina V. Ostrovskaya
    Regular and Chaotic Dynamics, 2017, 22 : 865 - 879
  • [46] Existence and stability of localized modes in one-dimensional nonlinear lattices
    Yoshimura, Kazuyuki
    NONLINEAR ACOUSTICS: STATE-OF-THE-ART AND PERSPECTIVES (ISNA 19), 2012, 1474 : 60 - 63
  • [47] ON STABILITY OF THE GRADIENT ALGORITHM FOR ONE SEPARABLE NONLINEAR DISCRETE OPTIMIZATION PROBLEMS
    Ramazanov, A. B.
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL I, 2018, : 312 - 314
  • [48] STABILITY OF SOLUTION OF ONE NONLINEAR INITIAL-BOUNDARY PROBLEM OF AEROELASTICITY
    Ankilov, A. V.
    Vel'misov, P. A.
    Kazakova, Yu. A.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2013, (02): : 120 - 126
  • [49] Stability of fronts in the diffusive Rosenzweig-MacArthur model
    Ghazaryan, Anna
    Lafortune, Stephane
    Latushkin, Yuri
    Manukian, Vahagn
    STUDIES IN APPLIED MATHEMATICS, 2024, 153 (04)
  • [50] The stability of stationary fronts for a discrete nerve axon model
    Elmer, Christopher E.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2007, 4 (01) : 113 - 129