A conjugate gradient-based algorithm for large-scale quadratic programming problem with one quadratic constraint

被引:3
作者
Taati, A. [1 ]
Salahi, M. [1 ]
机构
[1] Univ Guilan, Fac Math Sci, Rasht, Iran
基金
美国国家科学基金会;
关键词
QCQP; Conjugate gradient algorithm; Generalized eigenvalue problem; TRUST-REGION SUBPROBLEM;
D O I
10.1007/s10589-019-00105-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider the nonconvex quadratically constrained quadratic programming (QCQP) with one quadratic constraint. By employing the conjugate gradient method, an efficient algorithm is proposed to solve QCQP that exploits the sparsity of the involved matrices and solves the problem via solving a sequence of positive definite system of linear equations after identifying suitable generalized eigenvalues. Specifically, we analyze how to recognize hard case (case 2) in a preprocessing step, fixing an error in Sect.2.2.2 of Pong and Wolkowicz (Comput Optim Appl 58(2):273-322, 2014) which studies the same problem with the two-sided constraint. Some numerical experiments are given to show the effectiveness of the proposed method and to compare it with some recent algorithms in the literature.
引用
收藏
页码:195 / 223
页数:29
相关论文
共 25 条
  • [1] Adachi S, 2017, MATH PROGRAM
  • [2] SOLVING THE TRUST-REGION SUBPROBLEM BY A GENERALIZED EIGENVALUE PROBLEM
    Adachi, Satoru
    Iwata, Satoru
    Nakatsukasa, Yuji
    Takeda, Akiko
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (01) : 269 - 291
  • [3] [Anonymous], COMMUNICATION
  • [4] Hidden conic quadratic representation of some nonconvex quadratic optimization problems
    Ben-Tal, Aharon
    den Hertog, Dick
    [J]. MATHEMATICAL PROGRAMMING, 2014, 143 (1-2) : 1 - 29
  • [5] Conn A. R., 2000, SIAM, DOI [10.1137/1.9780898719857, DOI 10.1137/1.9780898719857]
  • [6] FINDING A POSITIVE DEFINITE LINEAR COMBINATION OF 2 HERMITIAN MATRICES
    CRAWFORD, CR
    MOON, YS
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1983, 51 (JUN) : 37 - 48
  • [7] Duality and solutions for quadratic programming over single non-homogeneous quadratic constraint
    Feng, Joe-Mei
    Lin, Gang-Xuan
    Sheu, Reuy-Lin
    Xia, Yong
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2012, 54 (02) : 275 - 293
  • [8] The trust region subproblem and semidefinite programming
    Fortin, C
    Wolkowicz, H
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2004, 19 (01) : 41 - 67
  • [9] On solving trust-region and other regularised subproblems in optimization
    Gould N.I.M.
    Robinson D.P.
    Thorne H.S.
    [J]. Mathematical Programming Computation, 2010, 2 (01) : 21 - 57
  • [10] Solving the trust-region subproblem using the Lanczos method
    Gould, NIM
    Lucidi, S
    Roma, M
    Toint, PL
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (02) : 504 - 525