SOME NEW INFINITE FAMILIES OF CONGRUENCES MODULO 3 FOR OVERPARTITIONS INTO ODD PARTS

被引:2
作者
Xia, Ernest X. W. [1 ]
机构
[1] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
overpartition; congruence; odd part; PARTITIONS; POWERS;
D O I
10.4064/cm142-2-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (p) over bar (o)(n) denote the number of overpartitions of n in which only odd parts are used. Some congruences modulo 3 and powers of 2 for the function (p) over bar (o)(n) have been derived by Hirschhorn and Sellers, and Lovejoy and Osburn. In this paper, employing 2-dissections of certain quotients of theta functions due to Ramanujan, we prove some new infinite families of Ramanujan-type congruences for (p) over bar (o)(n) modulo 3. For example, we prove that for n, alpha >= 0, (p) over bar (o)(4(alpha) (24n + 17)) equivalent to (p) over bar (o)(4(alpha) (24n +23)) equivalent to 0 (mod 3)
引用
收藏
页码:255 / 266
页数:12
相关论文
共 15 条
[11]   A short note on the overpartition function [J].
Kim, Byungchan .
DISCRETE MATHEMATICS, 2009, 309 (08) :2528-2532
[12]  
Lovejoy J., 2011, Integers, V11, DOI [10.1515/integ.2011.004, DOI 10.1515/INTEG.2011.004]
[13]   The overpartition function modulo small powers of 2 [J].
Mahlburg, K .
DISCRETE MATHEMATICS, 2004, 286 (03) :263-267
[14]   q-Pell sequences and two identities of V.A.!Lebesgue [J].
Santos, JPO ;
Sills, AV .
DISCRETE MATHEMATICS, 2002, 257 (01) :125-142
[15]   New Ramanujan-like congruences modulo powers of 2 and 3 for overpartitions [J].
Yao, Olivia X. M. ;
Xia, Ernest X. W. .
JOURNAL OF NUMBER THEORY, 2013, 133 (06) :1932-1949